PROBLEM SHEET 1

1.1 Find the radius and centre of the circle described by the equation

$$
x^{2}+y^{2}-2 x-4 y+1=0
$$

by writing it in the form $(x-a)^{2}+(y-b)^{2}=c^{2}$ for suitable a, b and c.
1.2 Find the equation of the line perpendicular to $y=3 x$ passing through the point $(3,9)$.
1.3 Given

$$
\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \quad \text { and } \quad \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B
$$

show that

$$
\cos A \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)] \quad \text { and } \sin ^{2} A=\frac{1}{2}[1-\cos 2 A] .
$$

1.4 Show that

$$
4 \cos (\alpha t)+3 \sin (\alpha t)=5 \cos (\alpha t+\phi)
$$

where $\phi=\arctan (-3 / 4)$.
1.5 Show that, for $-1 \leq x \leq 1$,

$$
\cos \left(\sin ^{-1} x\right)= \pm \sqrt{1-x^{2}}
$$

1.6 Given

$\sinh (A \pm B)=\sinh A \cosh B \pm \cosh A \sinh B$ and $\cosh (A \pm B)=\cosh A \cosh B \pm \sinh A \sinh B$, show that

$$
\cosh A \cosh B=\frac{1}{2}[\cosh (A+B)+\cosh (A-B)] \quad \text { and } \quad \sinh ^{2} A=\frac{1}{2}[\cosh 2 A-1] .
$$

1.7 Given that

$$
\sinh x=\frac{1}{2}\left[e^{x}-e^{-x}\right],
$$

show that

$$
\sinh ^{-1} x=\ln \left[x+\sqrt{1+x^{2}}\right] .
$$

1.8 Express

$$
\frac{x}{(x-1)(x-2)}
$$

in partial fractions.
1.9 If $a_{n}=\frac{1}{n}$, find $\sum_{i=1}^{5} a_{n}$ as a fraction.
1.10 If $S=\sum_{i=0}^{N} x^{i}$, show that $x S=\sum_{i=1}^{N+1} x^{i}$. Hence show that $S-x S=1-x^{N+1}$ and therefore that

$$
S=\frac{1-x^{N+1}}{1-x}
$$

PROBLEM SHEET 2

2.1 Given that

$$
\sinh x=\frac{1}{2}\left[e^{x}-e^{-x}\right]
$$

show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\cosh x .
$$

2.2 Given that

$$
\cosh x=\frac{1}{2}\left[e^{x}+e^{-x}\right]
$$

show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\sinh x
$$

2.3 Let n be a positive integer. Show that

$$
\frac{\mathrm{d}^{n}\left(x^{n}\right)}{\mathrm{d} x^{n}}=n!
$$

2.4 If $y=\ln x$, show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x} ; \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{-1}{x^{2}} ; \quad \frac{\mathrm{d}^{100} y}{\mathrm{~d} x^{100}}=\frac{-99!}{x^{100}}
$$

2.5 Find the equation of the tangent to the curve $y=x^{2}$ at $(1,1)$.
2.6 Find the slope of the curve $y=4 x+e^{x}$ at $(0,1)$.
2.7 Find the angle of inclination of the tangent to the curve $y=x^{2}+x+1$ at the point $(0,1)$.
2.8 The displacement $y(t)$ metres of a body at time t seconds $(t \geq 0)$ is given by $y(t)=t-\sin t$. At what times is the body at rest?
2.9 A particle has displacement $y(t)$ metres at time t seconds given by $y(t)=3 t^{3}+4 t+1$. Find its acceleration at time $t=4$ seconds.
2.10 If

$$
y=\sum_{n=0}^{N} a_{n} x^{n}
$$

show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\sum_{n=1}^{N} n a_{n} x^{n-1}
$$

PROBLEM SHEET 3

3.1 If $y=\ln \left(1+x^{2}\right)$, find $\mathrm{d} y / \mathrm{d} x$.
3.2 If

$$
y=\frac{x}{1+x^{2}}
$$

find $\mathrm{d} y / \mathrm{d} x$.
3.3 If $y=\cosh \left(x^{4}\right)$, find $\mathrm{d} y / \mathrm{d} x$.
3.4 If $y=x^{2} \ln x$, find $\mathrm{d}^{2} y / \mathrm{d} x^{2}$.
3.5 Find $\mathrm{d} y / \mathrm{d} x$ for $y=\left(1+x^{2}\right)^{-1 / 2}$.
3.6 Show that for $y=\sinh ^{-1} x$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{1+x^{2}}}
$$

3.7 Show that for $y=\ln \left[x+\sqrt{1+x^{2}}\right]$,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{1+x^{2}}}
$$

3.8 Find $\mathrm{d} y / \mathrm{d} x$ for $y=\cos ^{-1}(\sin x)$.
3.9 A curve is given in polar coordinates by $r=1+\sin ^{2} \theta$. Find $\mathrm{d} y / \mathrm{d} x$ at $\theta=\pi / 4$.
3.10 Show that if

$$
y=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|, \quad \text { then } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x^{2}-a^{2}} .
$$

4.1 Given $f(x-c t)$, where x and c are constant, show that

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} f(x-c t)=c^{2} f^{\prime \prime}(x-c t)
$$

and calculate this expression when $f(u)=\sin u$.
4.2 Classify the stationary point of $y=x^{-2} \ln x$, where $x>0$.
4.3 Classify the stationary points of $y(x)=x^{2}-3 x+2$.
4.4 The numbers x and y are subject to the constraint $x+y=\pi$. Find the values of x and y for which $\cos (x) \sin (y)$ takes its minimum value.
4.5 Sketch the graph of

$$
y=\frac{x}{1+x^{2}} .
$$

4.6 Sketch the graph of

$$
y(x)=\tan (2 x) \text { for }-\frac{3 \pi}{4} \leq x \leq \frac{3 \pi}{4}
$$

4.7 Sketch the graph of $y=x \ln x$ for $x>0$.
4.8 Sketch the graph of

$$
y=\frac{x^{3}}{2 x-1}
$$

showing clearly on your sketch any asymptotes.
4.9 Sketch the graph of

$$
y=x \cos (3 x) \text { for } 0 \leq x \leq 2 \pi
$$

PROBLEM SHEET 5

5.1 Verify the following Taylor expansions (taking the ranges of validity for granted).
(a)

$$
e^{x}=1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots+\frac{1}{n!} x^{n}+\ldots \text { valid for any } x .
$$

(b)

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\ldots \text { valid for any } x .
$$

(c)

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\ldots \text { valid for any } x .
$$

(d) Let α be a constant.

$$
(1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!} x^{2}+\frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3}+\ldots \text { valid for }-1<x<1
$$

(e)

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+\frac{(-1)^{n-1} x^{n}}{n}+\ldots \text { valid for }-1<x \leq 1
$$

5.2 Obtain a four-term Taylor polynomial approximation valid near $x=0$ for each of the following.
(a) $(1+x)^{1 / 2}$,
(b) $\sin (2 x)$,
(c) $\ln (1+3 x)$.
6.1 Reduce to standard form

$$
\text { (a) } \frac{3+i}{4-i}, \quad \text { and } \quad(b) \quad(1+i)^{5}
$$

6.2 Prove

$$
\text { (a) }\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|, \quad \text { and (b) } \quad\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \text { when } z_{2} \neq 0 \text {. }
$$

6.3 Given that $e^{i \theta}=\cos \theta+i \sin \theta$, prove that

$$
\cos (A+B)=\cos A \cos B-\sin A \sin B
$$

6.4 Let $z=1+i$. Find the following complex numbers in standard form and plot their corresponding points in the Argand diagram:-

$$
\text { (a) } \bar{z}^{2}, \quad \text { and }(b) \frac{z}{\bar{z}} .
$$

6.5 Find the modulus and principal arguments of (a) $-2+2 i$, (b) $3+4 i$.
6.6 Find all the complex roots of
(a) $\cosh z=1$;
(b) $\sinh z=1$;
(c) $e^{z}=-1$;
(d) $\cos z=\sqrt{2}$.
6.7 Show that the mapping

$$
w=z+\frac{c}{z},
$$

where $z=x+i y, w=u+i v$ and c is a real number, maps the circle $|z|=1$ in the z plane into an ellipse in the w plane and find its equation.
6.8 Show that

$$
\cos ^{6} \theta=\frac{1}{32}(\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10)
$$

7.1 The matrix $A=\left(a_{i j}\right)$ is given by

$$
A=\left(\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 0 & 1 \\
2 & -2 & 4 \\
1 & 5 & -3
\end{array}\right)
$$

Identify the elements a_{13} and a_{31}.
7.2 Given that

$$
A=\left(\begin{array}{lll}
1 & 3 & 0 \\
2 & 1 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & 0 \\
2 & 1 \\
-1 & -1
\end{array}\right), \quad C=\left(\begin{array}{rr}
2 & 1 \\
-1 & 1 \\
-0 & 1
\end{array}\right)
$$

verify the distributive law $A(B+C)=A B+A C$ for the three matrices.
7.3 Let

$$
A=\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
-2 & -1 \\
4 & 2
\end{array}\right) .
$$

Show that $A B=0$, but that $B A \neq 0$.
7.4 A general $n \times n$ matrix is given by $A=\left(a_{i j}\right)$. Show that $A+A^{T}$ is a symmetric matrix, and that $A-A^{T}$ is skew-symmetric.

Express the matrix

$$
A=\left(\begin{array}{rrr}
2 & 1 & 3 \\
-2 & 0 & 1 \\
3 & 1 & 2
\end{array}\right)
$$

as the sum of a symmetric matrix and a skew-symmetric matrix.
7.5 Let the matrix

$$
A=\left(\begin{array}{rrr}
1 & 0 & 0 \\
a & -1 & 0 \\
b & c & 1
\end{array}\right)
$$

Find A^{2}. For what relation between a, b, and c is $A^{2}=I$ (the unit matrix)? In this case, what is the inverse matrix of A ? What is the inverse matrix of $A^{2 n-1}$ (n a positive integer)?
7.6 Using the rule for inverses of 2×2 matrices, write down the inverse of

$$
\left(\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right)
$$

7.7 If A and B are both $n \times n$ matrices with A non-singular, show that

$$
\left(A^{-1} B A\right)^{2}=A^{-1} B^{2} A
$$

PROBLEM SHEET 8

8.1 Obtain the components of the vectors below where L is the magnitude and θ the angle made with the positive direction of the x axis $\left(-180^{\circ}<\theta \leq 180^{\circ}\right)$.
(a) $L=3, \theta=60^{\circ}$;
(b) $L=3, \theta=-150^{\circ}$.
8.2 Two ships, S_{1} and S_{2} set off from the same point Q. Each follows a route given by successive displacement vectors. In axes pointing east and north, S_{1} follows the path to B via $\overrightarrow{Q A}=(2,4)$, and $\overrightarrow{A B}=(4,1) . S_{2}$ goes to E via $\overrightarrow{Q C}=(3,3) \quad \overrightarrow{C D}=(1,1)$ and $\overrightarrow{D E}=(2,-3)$. Find the displacement vector $\overrightarrow{B E}$ in component form.
8.3 Sketch a diagram to show that if A, B, C are any three points, then $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\mathbf{0}$. Formulate a similar result for any number of points.
8.4 Sketch a diagram to show that if A, B, C, D are any four points, then $\overrightarrow{C D}=\overrightarrow{C B}+\overrightarrow{B A}+\overrightarrow{A D}$. Formulate a similar result for any number of points.
8.5 Two points A and B have position vectors a and \mathbf{b} respectively. In terms of \mathbf{a} and \mathbf{b} find the position vectors of the following points on the straight line passing through A and B.
(a) The mid-point C of $A B$;
(b) a point U between A and B for which $A U / U B=1 / 3$.
8.6 Suppose that C has position vector \mathbf{r} and $\mathbf{r}=\lambda \mathbf{a}+(1-\lambda) \mathbf{b}$ where λ is a parameter, and A, B are points with \mathbf{a}, \mathbf{b} as position vectors. Show that C describes a straight line. Indicate on a diagram the relative positions of A, B, C, when $\lambda<0,0<\lambda<1$, and $\lambda>1$.
8.7 Find the shortest distance from the origin of the line given in vector parametric form by $\mathbf{r}=\mathbf{a}+t \mathbf{b}$, where

$$
\mathbf{a}=(1,2,3) \quad \text { and } \mathbf{b}=(1,1,1),
$$

and t is the parameter (Hint: use a calculus method, with t as the independent variable.)
8.8 $A B C D$ is any quadrilateral in three dimensions. Prove that if P, Q, R, S are the mid-points of $A B, B C, C D, D A$ respectively, then $P Q R S$ is a parallelogram.
8.9 $A B C$ is a triangle, and P, Q, R are the mid-points of the respective sides $B C, C A, A B$. Prove that the medians $A P, B Q, C R$ meet at a single point G (called the centroid of $A B C$; it is the centre of mass of a uniform triangular plate.)
8.10 Show that the vectors $\overline{0 A}=(1,1,2), \overline{0 B}=(1,1,1)$, and $\overline{0 C}=(5,5,7)$ all lie in one plane.

PROBLEM SHEET 9

9.1 The figure $A B C D$ has vertices at $(0,0),(2,0),(3,1)$ and $(1,1)$.

Find the vectors $\overrightarrow{A C}$ and $\overrightarrow{B D}$. Find $\overrightarrow{A C} \cdot \overrightarrow{B D}$.
Hence show that the angles between the diagonals of $A B C D$ have cosine $-1 / \sqrt{5}$.
9.2 Show that the vectors $\mathbf{a}=\mathbf{i}+3 \mathbf{j}+4 \mathbf{k}$ and $\mathbf{b}=-2 \mathbf{i}+6 \mathbf{j}-4 \mathbf{k}$ are perpendicular.

Obtain any vector $\mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}$ which is perpendicular to both \mathbf{a} and \mathbf{b}.
9.3 Find the value of λ such that the vectors $(\lambda, 2,-1)$ and $(1,1,-3 \lambda)$ are perpendicular.
9.4 Find a constant vector parallel to the line given parametrically by

$$
x=1-\lambda, y=2+3 \lambda, z=1+\lambda .
$$

9.5 A circular cone has its vertex at the origin and its axis in the direction of the unit vector $\hat{\mathbf{a}}$. The half-angle at the vertex is α. Show that the position vector \mathbf{r} of a general point on its surface satisfies the equation

$$
\hat{\mathbf{a}} \cdot \mathbf{r}=|\mathbf{r}| \cos \alpha
$$

Obtain the cartesian equation when $\hat{\mathbf{a}}=(2 / 7,-3 / 7,-6 / 7)$ and $\alpha=60^{\circ}$.

PROBLEM SHEET 10

10.1 For vectors \mathbf{a} and \mathbf{b}, show

$$
|\mathbf{a}+\mathbf{b}|^{2}+|\mathbf{a}-\mathbf{b}|=2\left(|\mathbf{a}|^{2}+|\mathbf{b}|^{2}\right) \quad \text { and } \quad \mathbf{a} \cdot \mathbf{b}=\frac{1}{4}\left(|\mathbf{a}+\mathbf{b}|^{2}-|\mathbf{a}-\mathbf{b}|^{2}\right)
$$

10.2 In component form, let $\mathbf{a}=(1,-2,2), \mathbf{b}=(3,-1,-1)$, and $\mathbf{c}=(-1,0,-1)$. Evaluate

$$
\mathbf{a} \times \mathbf{b}, \quad \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}), \quad \mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})
$$

10.3 What is the geometrical significance of $\mathbf{a} \times \mathbf{b}=\mathbf{0}$?
10.4 Show that the vectors $\mathbf{a}=2 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k}$ and $\mathbf{b}=6 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ are perpendicular. Find a vector which is perpendicular to \mathbf{a} and \mathbf{b}.
10.5 Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be three non-coplanar vectors, and \mathbf{v} be any vector. Show that \mathbf{v} can be expressed as

$$
\mathbf{v}=X \mathbf{a}+Y \mathbf{b}+Z \mathbf{c}
$$

where X, Y, Z, are constants given by

$$
X=\frac{\mathbf{v} \cdot(\mathbf{b} \times \mathbf{c})}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})}, \quad Y=\frac{\mathbf{v} \cdot(\mathbf{c} \times \mathbf{a})}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})}, \quad Z=\frac{\mathbf{v} \cdot(\mathbf{a} \times \mathbf{b})}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})} .
$$

(Hint: start by forming, say, $\mathbf{v} \cdot(\mathbf{b} \times \mathbf{c})$).

PROBLEM SHEET 11

11.1 Integrate $\cos (3 x+4)$.
11.2 Integrate $(1-2 x)^{10}$.
11.3 Integrate $e^{4 x-1}$.
11.4 Integrate $(4 x+3)^{-1}$.
11.5 Find the equation of the curve passing through the point $(1,2)$ satisfying $\mathrm{d} y / \mathrm{d} x=2 x$.
11.6 A particle has acceleration $\left(3 t^{2}+4\right) \mathrm{ms}^{-2}$ at time t seconds. If its initial speed is $5 \mathrm{~ms}^{-1}$, what is its speed at time $t=2$ seconds?
11.7 Find the area between the graph of $y=\sin x$ and the x-axis from $x=0$ to $x=\pi / 2$.
11.8 Find the area between the graph

$$
y=\frac{1}{x-1}
$$

and the x-axis between $x=2$ and $x=3$.
11.9 Find the signed area between the graph $y=2 x+1$ and the x-axis between $x=-1$ and $x=3$.
11.10 Find y, given that

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\sin x-\frac{4}{x^{3}}
$$

