THE COLLEGES OF OXFORD UNIVERSITY

MATHEMATICS FOR PHYSICISTS Specimen of Written Test at Interview

> Issued May 2000 Time allowed: 1 hour

For candidates applying for Physics, and Physics and Philosophy

No calculators or tables may be used Attempt as many questions as you can

Solve for x, giving real solutions only:

(i)
$$\ln(x^3) - \ln(5) = \ln(200);$$
 [2]

(ii)
$$x^4 = 0.0081$$
. [2]

- 2 The third and fifth terms of an infinite geometric series are y_{12} , y_{48} respectively. Find:
 - (i) the first term of the series; [2]
 - (iii) the sum of the series.

3

The figure shows two circles with radii2r, r and centres A, B respectively.Find in terms of r the area of theshaded region.[6]

- 4 Two identical dice are thrown, one after the other. What are the probabilities that:
 - (i) the total of the numbers shown is 6; [3]
 - (ii) the second number is greater than the first? [3]

[Turn over]

[3]

- i) Find the stationary points of the function $f(x) = x + \sin(x)$ on the interval [4] $0 \leq \mathbf{r} \leq 4\pi$ ii) Identify each stationary point as a maximum, minimum or point of inflexion.
 - [2]
- How many solutions to the equation $\sin x \tan x = 0.001$ are there on the 6 interval $0 \le x < 2\pi$? (You may find it helpful to sketch the graphs $y = \sin x$, $y = \tan x$ and $y = \sin x \tan x$ using one set of axes for all three [4] sketches.)

7

5

A and B are on the circumference of a circle centred at C; the coordinates of A and C are given on the diagram. Find the coordinates of B and give the [4] equation of the line CB in the form [2] y = mx + c.

a) Differentiate with respect to x the function $y = \cos(x^2)$ [2] 8

b) Find
$$\int_{-\pi/2}^{\pi/2} \sin x \, dx$$
. [2]

c) Integrate by parts
$$\int_{-\pi/2}^{\pi/2} x \sin x \, dx$$
. [3]

The sketch shows the graphs $y = \ln x$ and y = ax for three different values of the constant a. What value of a corresponds to the case in which the graphs touch at one point only? Hint: note that at this point the gradients of the two functions are equal. (Your answer should be expressed in terms of e, the base of natural logarithms.)

[6]