Sl. No. :	MB/MCCET 2
	CUTIVE M.B.A. (TWO YEARS) E TEST, OCTOBER 2011.
HALL TICKET No. :	
Signature of the Candidate	Signature of the Invigilator

(Name of the Candidate)

Time : $2\frac{1}{2}$ hours

Max. Marks: 200 Min. Marks for Pass: 70

INSTRUCTIONS TO CANDIDATES

- Separate Answer Sheet is supplied to you along with Question Paper Booklet to record 1. your responses. Please read and follow the instructions for marking the responses.
- 2. Candidate should write the Hall Ticket Number only in the space provided on this page and Answer Sheet. DO NOT WRITE HALL TICKET NUMBER ANYWHERE ELSE.
- 3. Immediately on opening this Question Paper Booklet, please verify for (i) Serial number of the questions (1–200) (ii) The number of pages and (iii) Correct printing. IN CASE OF ANY DEFECT. PLEASE REPORT TO THE INVIGILATOR AND ASK FOR REPLACEMENT WITH IN FIVE MINUTES FROM THE COMMENCEMENT OF THE TEST.
- 4. Each correct answer will be awarded one mark.
- Adoption of any kind of unfair means at the time of the test or any act of 5. impersonation will result in invalidation of his/her claim for taking the test and will be subjected to prosecution under AP Public Examination (Prevention of Malpractice and Unfair Means) Rules, 1997.
- 6. Use of Calculators, Mathematical/Log tables, Pagers, any other electronic gadgets and loose sheets of paper is strictly prohibited.
- 7. Darken the appropriate circles of 1, 2, 3 or 4 on the Answer Sheet corresponding to correct answer to the concerned question number in the sheet. If you want to change the answer, erase the wrong answer completely and then darken the correct circle. DARKENING OF MORE THAN ONE CIRCLE AGAINST ANY QUESTION AUTOMATICALLY GETS INVALIDATED.
- 8. Rough work should be done only in the space provided for this purpose in **Question Paper Booklet.**
- Once the candidate enters the Examination Hall, he/she shall not be permitted to 9. leave the Hall till the END of the Examination.
- 10. Ensure that invigilator puts his/her signature in the space provided on Question Paper Booklet and the Answer Sheet. Candidate should sign in the space provided on the Answer Sheet.
- 11. The candidate should write the Question Paper Booklet number and sign in the space provided in the Nominal Rolls.
- 12.Return the Answer Sheet and Question Paper Booklet to the Invigilator before leaving the Examination Hall.

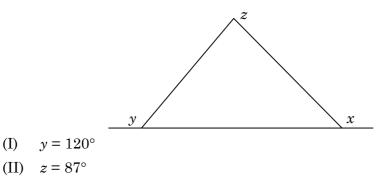
StudentBounty.com COMMON ENTRANCE TEST FOR MCA/MBA/EXECUTIVE MBA **PROGRAMME : 2010–11**

Time : $2\frac{1}{2}$ hours

Maximum : 200 marks

SECTION A

ANALYTICAL ABILITY


75 Marks

Directions (Q. No. 1-20): A question is followed by data in the form of two statements labeled as I and II. You must decide whether the data given in the statements are sufficient to answer the questions. Using the data make the appropriate choice from (1) to (4) as per the following guidelines:

- (a) Mark choice (1): if statement I alone is sufficient to answer the question; if statement II alone is sufficient to answer the (b) Mark choice (2): question; (c) Mark choice (3) : if both statements I and II are sufficient to answer the question, but neither statement alone is not sufficient: (d) Mark choice (4): if both the statements I and II together are not sufficient to answer the questions and additional data is required.
- 1. What is the average mark of 10 students?
 - The average mark of 9 of them is 60. (I)
 - (II)The marks obtained by one of them is 52.
- If *A* is the matrix $\begin{bmatrix} 5 & 6 \\ x & 4 \end{bmatrix}$, then what is the value of *x*? 2.
 - (I) A is not a symmetric matrix.
 - (II) A is a singular matrix.
- What is the volume of the cone? 3.
 - The height of the cone is 10 cm. (I)
 - (II)The area of its base is 126 sq.cm.
- What are the values of the real numbers *a* and *b*? 4.
 - 2 is a root of $x^a b = 0$. (I)
 - (II) 2 is a root of $a^4 \sqrt{a^x} = 0$.

- 5. What are the values of the real numbers *a* and *b*?
 - (I) a: b = 7: 3, b > 0.
 - (II) 2a: b = 6: 11, a > 0.
- 6. Is the positive integer a divisible by 42?
 - (I) a is not divisible by 7.
 - (II) a is divisible by 21.
- 7. Is $(\log_{10} x)^2 = (\log_{10} y)^2$?
 - (I) x = y = 10
 - (II) $x^2 > y^2$
- 8. What is the area of the triangle formed by joining the points *A*, *B* and *C*? (I) A = (2, 5), B = (3, 2).
 - (II) A, B and C lie on a straight line.
- 9. If *x*, *y* and *n* are positive integers, is $x^n + y^n$ divisible by 2?
 - (I) x = 21
 - (II) y = 1001
- 10. Is ab = cd?
 - (I) a% of c is equal to b% of d.
 - (II) b% of c is equal to d% of a.
- 11. How many degrees is the angle *x*?

- 12. If *b*, *c* are positive integers, is b + c, a prime number?
 - (I) b and c are odd
 - (II) c = 5b

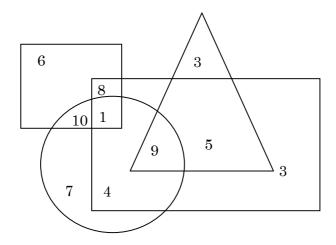
- StudentBounty.com Each student in a hostel speak Telugu or Kannada or both. What is the 13.number of students who can speak Telugu only?
 - (I) The total number of students in the hostel is 500 and the number of students who can speak both Telugu and Kannada is 156.
 - The number of students who can speak Kannada only is 124. (II)
- 14. Is *x* the largest among the positive real numbers *x*, *y* and *z*?
 - x y > |z|(I)
 - (II)x + z > 2 |y|
- How many of A, B, C and D got selected into hockey team? 15.
 - (I) The statement 'Atleast one of *A* and *B* got selected into the team' is true.
 - (II)The statement 'C and D are selected into the team' is False.
- Is the triangle *ABC* right angled? 16.

(I)
$$|A=2|B$$

(II)
$$\underline{B} = \frac{2}{3} \underline{C}$$

- 17.Four circles of equal radius are inscribed in a square touching each other. What is the area covered by the four circles?
 - The perimeter of the square is 32 cm. (I)
 - (II)The ratio of the sum of the areas of the four circles to that of the square is $\pi:4$.
- If x, y, z are distinct integers, is $(x y)^2 > 0$? 18.
 - (I) z = 2x
 - (II) y > x
- What is the cost of painting a room which is of the form of a cube? 19.
 - The base area of the room is 144 sq. ft. (I)
 - The room has one door of size $6' \times 4'$ and has no windows. (II)
- 20.If a, b, c are positive integers, is the product abc even?
 - a+b+c is odd. (I)
 - (II) a+c is odd.

PROBLEM SOLVING


StudentBounty.com Directions (Q.21 to Q.35) : In each of the questions numbered 21 to 35 a sequence of numbers or letters that follow a difine pattern is given. Each question has a blank space. This has to be filled by the correct answer from the four given options to complete the sequence without breaking the pattern.

21.	6, 27, 128,	,	3130				
	(1) 209	(2)	369	(3)	629	(4)	1031
22.	7, 19, 37, 61, —						
	(1) 91	(2)	101	(3)	111	(4)	121
23.	99, 9999, 999999,		, 999999	99999)		
	(1) 9999999			(2)	99999999		
	(3) 999999999			(4)	999999999999		
24.	$\frac{3}{4}, \frac{15}{16}, \frac{63}{64},$		$\frac{1023}{1024}$				
	(1) $\frac{127}{128}$	(2)	$\frac{255}{256}$	(3)	$\frac{511}{512}$	(4)	$\frac{711}{712}$
	120		200		012		112
25.	3, -1, 5, -7,		, –31				
	(1) 9			(3)	15	(4)	17
26.	DFI, EGJ, FHK, –						
	(1) GIM	(2)	GIL	(3)	HJN	(4)	HIM
07	$4 + \sqrt{13}, 9 + \sqrt{10}, -$						
27.					_		_
	(1) $14 + \sqrt{7}$	(2)	$15 + \sqrt{7}$	(3)	$16 + \sqrt{7}$	(4)	$19 + \sqrt{7}$
26			DTT 7				
28.	A9Z, B7Y, CSX, $-$			$\langle \mathbf{O} \rangle$	Doll		Dow
	(1) D2W	(2)	D4W	(3)	D3U	(4)	D3M
29.	8 : 81 :: 6 :						
		(2)	36	(3)	49	(4)	64
		. ,		. /			
			0				

6

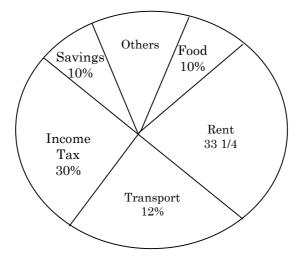
								Ste
								They.
								24 StudentBounty.com
30.	99 :	120 :::	:6	33				The second
	(1)	48	(2)	42	(3)	36	(4)	24
31.	22:	2222 :: 222 : –						
	(1)	22222	(2)	2222	(3)	222222	(4)	2222222
32.	LFH	IW, KEGV, JD)FU, -					
	(1)	ITCE	(2)	ICET	(3)	IECT	(4)	ETCI
33.	11, 1	101, 1001, —		—, 100001, 10	00001			
	(1)	1001	(2)	10001	(3)	10000001	(4)	10000001
34.	2, 3,	5, 7, 11, 13, -		, 19, 23				
	(1)	14	(2)	15	(3)	16	(4)	17
35.		И, Z, C, ———						
	(1)	D	(2)	Ε	(3)	F	(4)	Н
	Dire	ections (Q.36	to 45	5) : Find the (ODD	MAN out.		
36.	(1)	65	(2)	126	(3)	217	(4)	343
37.	(1)	$\frac{15}{19}$	(2)	$\frac{11}{13}$	(3)	$\frac{3}{7}$	(4)	$\frac{2}{5}$
38.	(1)	345	(2)	143	(3)	567	(4)	789
39.	(1)	169	(2)	961	(3)	131	(4)	625
40.	(1)	697	(2)	957	(3)	894	(4)	876
41.	(1)	96	(2)	64	(3)	48	(4)	78
42.	(1)	DELM	(2)	BDIJ	(3)	GHRS	(4)	PQAB
43.	(1)	BFH	(2)	MQS	(3)	GJL	(4)	NRT
44.	(1)	Planet	(2)	Satellite	(3)	Sky	(4)	Star
45.	(1)	Bat	(2)	Eat	(3)	Fat	(4)	Pot
	. /		. /		. /			

Directions (Q.46 - 50) : These questions are based on diagram:

Square represents the players who play "Playing Cards". Rectangle represents the players who play "Chess". Circle represents the players who play "Table Tennis" and Triangle represents the players who plays "Squash".

46.	The	players who p	lays o	chess is				
	(1)	8+1+7+5+3+	4		(2)	8+1+9+5+3+4		
	(3)	8+1+9+2+6+	4		(4)	8+1+3+4+5+2		
47.	The	players who p	lay b	oth chess and	table	tennis but not ar	ny oth	er game is
	(1)	4	(2)	5	(3)	8	(4)	10
48.	The	players who p	lay a	t-most two gan	me is			
	(1)	1+2+3+4+5+	6+9+	7	(2)	2+3+4+5+6+7+	8+9	
	(3)	2+3+4+5+7+	10+8-	+9	(4)	2+3+6+7+5+8+	10+4	
49.	The	players who p	olav a	t least two gai	nes is			
	(1)	1+2+3+4+5+	·	-	(2)	4+5+8+10+9+1		
	. ,							
	(3)	1+3+4+5+9+	8+10		(4)	4+5+7+10+9+1		
50.	The	players who p	olay ez	xactly one gan	ne is			
	(1)	2+3+4+8			(2)	2+3+5+9		
	(3)	2+3+6+7			(4)	2+3+10+7		

MB/MCCET 2011


8

Directions (Q.No. 51 to 55):

StudentBounty.com Study the following pie chart and answer the questions 51 to 55.

Expenditure pattern of Mr : Jaideep

Monthly salary of Mr. Jaideep is Rs.24,000 in 2006.

- 51.What is the ratio of the amount meant for others to that of food? (1)7:15(2)17:30(3)15:7(4) 3:4
- 52.What is the amount of rent paid by Mr. Jaideep per month? Rs. 7500 (2)Rs. 8000 (3)Rs. 8500 (4) Rs. 9000 (1)
- What is the angle made by the sector representing the transport expenditure? 53. 41.8° 42.2° (1)(2)(3) 43.2° 38.2° (4)
- If Mr. Jaideep's salary increases by 10% and income tax also increases by 10% 54.over its existing rate then what will be his new savings, given that all other components have the same percentage as in 2006?
 - Rs. 1940 (2)Rs. 2080 (3)Rs. 2240 (4) Rs. 1848 (1)
- Mr. Jaideep could not go to work for six days in June 2006 due to ill health and 55.it was a loss of pay during that period. At the end of that month, what was his net salary after payment of income tax?
 - Rs. 14800 Rs. 13440 (3)Rs. 12880 Rs. 13220 (1)(2)(4)

CODING AND DECODING

Directions (Q.56 to 65) :

StudentBounts.com Note: If "BDCFMA" and "RSOQMR" coded as follows "STNOQP" and "DZEEFC" then what is the code follows:

56.	IHB	NJD =						
	(1)	AWQUVO	(2)	AWQVUO	(3)	WAQUVO	(4)	WAUQUO
57.	ZYT	FKA =						
	(1)	MLGSTM	(2)	MLGXSN	(3)	MLGSXN	(4)	NLGSXM
58.	RLC)DQG =						
	(1)	QDTEYB	(2)	QDYETB	(3)	YETBCD	(4)	YETCBD
59.	RAI	NBW =						
	(1)	AOJNEW	(2)	AJONEV	(3)	JOAINV	(4)	AOJENV
60.	SMT	TWTS =						
	(1)	JGFFZG	(2)	JGFZFG	(3)	JFGZFG	(4)	JZFGFG
61.	HOI	RMON =						
	(1)	ZABUBE	(2)	ZBAUBE	(3)	ZBAOEB	(4)	ZUBABE
62.	LOV	/ING =						
	(1)	VYTABI	(2)	VTABIY	(3)	VATYBI	(4)	VTBAYI
63.	SIT	UAS =						
	(1)	HNFFVG	(2)	HFFNVG	(3)	HNFVFG	(4)	HFNFVG
64.	LDF	ROLW =						
	(1)	BJYYQE	(2)	EJYYQB	(3)	BYJYQB	(4)	BYJQYE
65.	GOV	/MNT =						
	(1)	ZAGTBI	(2)	ZGATBI	(3)	ZTEABI	(4)	ZBTGAI
MB	/MC	CET 2011		10)			

DATE, TIME AND ARRANGEMENT

						Stu
						5 in the same
		DATE, TIME AN	D ARR	ANGEMENT		
66.		anuary 26 is Frida	y, what	is the day of A	August 1	5 in the same
	year? (1) Sunday	(2) Friday	(3)	Thursday	(4)	Tuesday
67.		ction of a wall cloc tes. What is the ac				w the times as
	(1) $9 \text{ hrs } 30 \text{ m}$		(2)	10 hrs 30 mi		
	(3) 11 hrs 30 r		(4)	7 hrs 30 min		
68.	How many time 12 hours?	es the angle betwe	en hour	s hand and m	inute ha	and is 180° in
	(1) 10	(2) 11	(3)	12	(4)	13
69.	Mr. A has a son How is D related	B and daughter C d to E?	$C, D ext{ is t}$	he wife of <i>B</i> ar	nd E is o	daughter of C.
	(1) Sister		(2)	Uncle		
	(3) Aunt		(4)	Grand Moth	er	
	B is second from	dents <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> , m extreme right. <i>D</i> <i>B</i> and <i>D</i> are sittin	E and E	3 are sitting t		
70.	Who is at the ex (1) A	treme right? (2) B	(3)	D	(4)	C
71.	Who is at sitting (1) C and E	g between A and B? (2) C and D	(3)	A and E	(4)	B and D
72.	Which of the foll (1) <i>A</i> , <i>C</i> , <i>E</i>	lowing is a correct s (2) D, B, E	sequenc (3)	e from the righ <i>E, B, D</i>	nt end? (4)	A, B, D
73.	i. F lands aft ii. C lands be			nd at an air po	rt as foll	lows:
	(1) \vec{B}	(2) <i>C</i>	(3)	A	(4)	G
74.	If $a * b = a + b + a$	ab-1 then what is	the valu	ue of 3*4 =		
	(1) 21	(2) 18	(3)	19	(4)	12
75.	$2\Delta 3 = 29$, $3\Delta 2 =$	11, $3\Delta 4 = 67$ then	$5\Delta 1 = -$			
	(1) 126	(2) 116	(3)	26	(4)	6
			11			

SECTION B MATHEMATICAL ABILITY 75 Marks

StudentBounty.com If n(A) = 3 and n(B) = 6 then the least possible elements in $(A \cup B) =$ 76. (1) 3 6 (2)9 (3)(4) 18

- In the following which is null set? 77.
 - (2) $\{x \mid x \in R, x^2 + 1 = 0\}$ (1) $\{x \mid x \in R, x^2 - 1 = 0\}$
 - $\{x \mid x \in R, x^2 9 = 0\}$ (4) $\{x \mid x \in R, x^2 = x + 2\}$ (3)
- 78. A is a set of childrens which is not null set and R is a relation on A which is defined as $(x, y) \in R \Leftrightarrow x$ is a brother of Y then R is _____
 - (1)Reflexive (2)Symmetric (3)Antisymmetric (4) Transitive

If f(1) = 1m f(1+n) = 2f(n) + 1 and $n \in N$ then f(100) =79.

(1)
$$2^{100}$$
 (2) 2^{99} (3) $2^{100} - 1$ (4) None

80. If $f\left(x+\frac{1}{x}\right) = x^2 + \frac{1}{x^2}$ then f(3) = _____. (3) -7(1) 7 (2) 10 (4) 0

81. If α , β are the roots of the Q.E. $9x^2 + 6x + 1 = 0$ then the Q.E. whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$ (1) $x^2 + 6x + 9 = 0$ (2) $x^2 - 6x + 9 = 0$

(3) $x^2 + 63x - 27 = 0$ (4) None

If the roots of the Q.E. are multiplied by 3 then the Q.E. is _____ 82.

(1) $x^3 - 63x + 27 = 0$ $(2) \qquad x^3 + 63x + 27 = 0$ (3) $x^3 + 63x - 27 = 0$ (4) None

Find the expression x^{30} in the expansion of $\left(3x^2 - \frac{1}{x^2}\right)^{15}$ 83.

Find the expression
$$x^{30}$$
 in the expansion of $\left(3x^2 - \frac{1}{x^2}\right)^{15}$
(1) 3^{-15} (2) 3^{15} (3) 3^{16} (4) None (4)

84. If the expression $x^3 + 7x + 8$ is divided by x + 2 find the remainder (2) -14 (1) 14 (3) 0 (4) None

85. If
$$A - 2B = \begin{pmatrix} 1 & 5 \\ 3 & 7 \end{pmatrix}$$
 and $2A - 3B = \begin{pmatrix} -2 & 5 \\ 0 & 7 \end{pmatrix}$ then $B = -----$.
(1) $\begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix}$ (2) $\begin{pmatrix} -4 & 5 \\ 6 & 7 \end{pmatrix}$ (3) $\begin{pmatrix} 4 & -5 \\ 6 & 7 \end{pmatrix}$ (4) None

86. If
$$A = \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}$$
 then find A^{-1}
(1) $\begin{pmatrix} 1 & -5 \\ 0 & 1 \end{pmatrix}$ (2) $\begin{pmatrix} 1 & 5 \\ 0 & -1 \end{pmatrix}$ (3) $\begin{pmatrix} -1 & 5 \\ 0 & -1 \end{pmatrix}$ (4) None

87. The value of
$$[(10)^{150} \div (10)^{146}]$$
 is ______.
(1) 1000 (2) 10000 (3) 100000 (4) 10^{6}

88. If
$$(18)^{3.5} \div (27)^{3.5} \times 6^{3.5} = 2^x$$
 then the value of x is _____.
(1) 3.4 (2) 4.5 (3) 6 (4) 7

89. If
$$2^{n+4} - 27^{n+2} = 3$$
 then *n* is equal to _____.
(1) 0 (2) 2 (3) -1 (4) -2

90.
$$\frac{1}{1+a^{(n-m)}} + \frac{1}{1+a^{(m-n)}} = -----$$
.
(1) 0 (2) 1/2 (3) 1 (4) $a^{(m+n)}$

91. If
$$2^{x} \times 8^{\frac{1}{5}} = 2^{\frac{1}{5}}$$
 then $x = -----$.
(1) $\frac{1}{5}$ (2) $\frac{-1}{5}$ (3) $\frac{2}{5}$ (4) $\frac{-2}{5}$

						_		Studen
92.	$\lim_{x\to 0} s$	$\sin 5x \cdot \cot 3x$						Stildenteount.com
	(1)	$\frac{5}{3}$	(2)	$\frac{3}{5}$	(3)	0	(4)	None
93.	Find	l the distance	betwo	een the poin	ts (1, –3	3) and (2, 4)		
	(1)	$\sqrt{2}$	(2)	50	(3)	$5\sqrt{2}$	(4)	$2\sqrt{5}$
94.	If (1	, 2), (3, 5) and	d (2, 5)) are the ver	tices of	a triangle its cer	ntroid	is
	(1)				(3)		(4)	(6, 3)
95.	The	equation of t	he line	e joining (3,	5) and (1, 1) is		
	(1)	x + y + 1 = 0				x + 2y + 3 = 0		
	(3)	x + y = 0			(4)	2x - y - 1 = 0		
96.	The	intercepts of	3x + 2	2y-6=0 on	the x as	nd y axis are res	pectiv	zely.
	(1)	2, 2			(3)		(4)	3, 3
97.	Exp	ress $\frac{7\pi}{4}$ radia	ans in	to degrees.				
	(1)	120°	(2)	135°	(3)	140°	(4)	160°
98.	If (1	$+ \tan A)(1 + t)$	an <i>B</i>):	=2 then (A	+B) = -			
	(1)	30°	(2)	45°	(3)	60°	(4)	90°
00	тe	<i>n n o</i>	1		•	<u></u>		
99.		$= a \tan^n \theta$ an					$\sqrt{9/n}$	
		$(x/a)^{2/n} + (2)^{2/n}$	y/b)*''	$n^{n} = 1$	(2)	$(y/b)^{2/n} - (x/a)$	$(2)^{2^{n}} =$	-1
	(3)	$\frac{x}{a} + \frac{y}{b} = 1$			(4)	None		
100.	depr		o ship	s at anchor		ove sea level ob 45° and 30° res		_

- (1) $100\sqrt{3}$ m (2) $200(\sqrt{3}-1)$ m
- (3) 100 m (4) None

MB/MCCET 2011

14

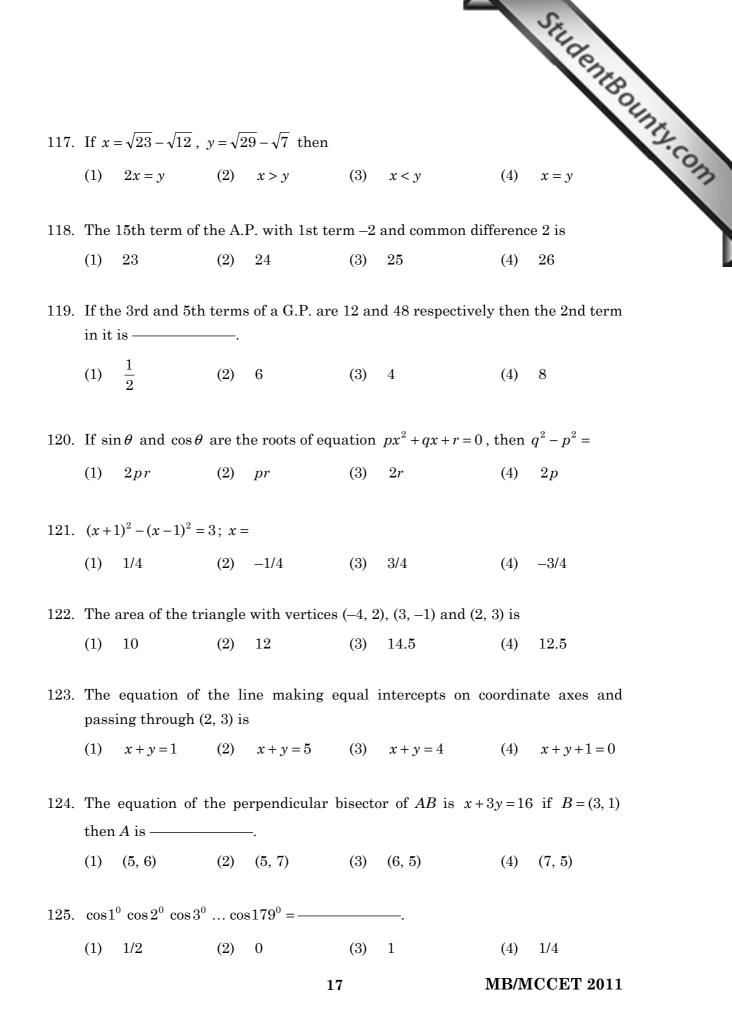
- StudentBounts.com 101. In a simultaneous throw of two dice, what is the probability of getting a total off 7?
 - (2) $\frac{1}{4}$ (3) $\frac{2}{3}$ (4) $\frac{3}{4}$ (1)
- 102. Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. What is the probability that the ticket drawn bears a number which is a multiple of 3?
 - (1) $\frac{3}{10}$ (2) $\frac{2}{20}$ (3) $\frac{2}{5}$ (4) $\frac{1}{2}$
- 103. One card is drawn from a pack of 52 cards. What is the probability that the card drawn is either a red card or a king?
 - (4) $\frac{27}{52}$ (2) $\frac{6}{13}$ (3) $\frac{7}{13}$ $\frac{1}{2}$ (1)
- 104. Two cards are drawn from a pack of 52 cards. The probability that either both are red is both is kings, is —
 - (2) $\frac{3}{26}$ (3) $\frac{63}{221}$ (4) $\frac{55}{221}$ (1) $\frac{7}{13}$
- 105. A bag contains 2 red, 3 green and 2 blue balls. Two balls are drawn at random. What is the probability that none of the balls drawn is blue?
 - (2) $\frac{11}{21}$ (3) $\frac{2}{7}$ (4) $\frac{5}{7}$ 10(1) $\overline{21}$
- 106. Find the derivative of $\sqrt{5x+6}$

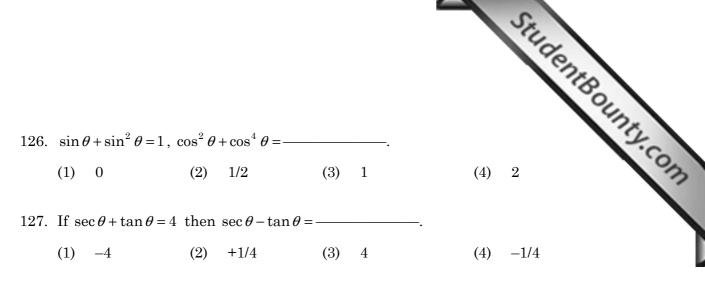
(1)
$$\frac{5}{\sqrt{5x+6}}$$
 (2) $\frac{5}{2\sqrt{5x+6}}$ (3) $\frac{5}{3\sqrt{5x+6}}$ (4) None

107. If the mean of x-2, x-3 and x+5 is 6 then the value of x is

- (1)2 (2)4 (3) 6 (4)8
- 108. The geometric mean of a natural number and its reciprocal is
 - (1)Zero (2)One
 - (3)The number itself (4) Can't say

109. For a symmetric distribution which of the following is true?


- (1) Mode \neq Median \neq Mean (2) Mode = Median = Mean
- (3) Mean = Median \neq Mode (4) None
- 110. The arithmetic mean of two numbers is 9 and their harmonic mean is 4. Their geometric mean is


StudentBounty.com

 $(1) \quad 4 \qquad (2) \quad 6 \qquad (3) \quad 9 \qquad (4) \quad 36$

111.
$$\frac{\left(p+\frac{1}{q}\right)^{p}\left(p-\frac{1}{q}\right)^{q}}{\left(q+\frac{1}{p}\right)^{p}\left(q-\frac{1}{p}\right)^{q}} = \left(\frac{p}{q}\right)^{x} \text{ then } x =$$
(1) p (2) q (3) $p+q$ (4) $p-q$

- 112. $\frac{(625)^{6.25}(25)^{2.6}}{(625)^{6.75}(5)^{1.2}} =$ (1) 45 (2) 40 (3) 35 (4) 25
- 113. The least of the numbers $\sqrt[3]{4}, \sqrt[4]{5}, \sqrt[4]{7}, \sqrt[3]{8}$
 - (1) $\sqrt[3]{8}$ (2) $\sqrt[4]{7}$ (3) $\sqrt[3]{4}$ (4) $\sqrt[4]{5}$
- 114. $(2.7)^3 (1.6)^3 (1.1)^3 =$. (1) 0 (2) 4.572 (3) 9.504 (4) 14.256
- 115. $\sqrt[3]{7} \times \sqrt{2} =$ (1) $\sqrt{14}$ (2) $\sqrt[3]{14}$ (3) $\sqrt[6]{181}$ (4) $\sqrt[6]{392}$
- 116. $\sqrt{5 4\sqrt{14}} = is$ (1) $\sqrt{8} + \sqrt{7}$ (2) $\sqrt{8} - \sqrt{7}$ (3) $\sqrt{9} + \sqrt{6}$ (4) $\sqrt{9} - \sqrt{6}$

- 128. A tower is of height 100 feet. If 2 boys standing on both sides of the tower observes the top with angles of elevation 30° and 45° , the distance between them (in feets) is
 - (1) 100 (2) $100\sqrt{3}$ (3) $100(\sqrt{3}+1)$ (4) $100\sqrt{2}$
- 129. If A and B are matrices such that AB = B, BA = A, then $A^2 + B^2 =$ (1) A - B (2) A + B (3) $A^2 - B^2$ (4) Null matrix

130. If the coefficient of x^7 and x^8 in the expansion of $\left(3 + \frac{x}{2}\right)^n$ are equal then n =

- (1) 56 (2) 52 (3) 48 (4) 44
- 131. If the term independent of x in $\left(\sqrt{x} + \frac{k}{x^2}\right)^{10}$ is 405 then k = ______. (1) 2 (2) ± 3 (3) ± 4 (4) 5
- 132. *A*, *B* and *C* respectively denotes the set of the letters in the word "FOLLOW", "WOLF" and "FLOW" then
 - (1) $B = C, A \neq B$ (2) $A = B, B \neq C$
 - (3) A = B = C (4) $A \neq B$ and $B \neq C$
- 133. If n(s) denotes then number of elements in s, n(A) = 20, n(B) = 40, and $n(A \cup B) = 50$ then $n(A \cap B) = ?$
 - $(1) \quad 30 \qquad (2) \quad 20 \qquad (3) \quad 10 \qquad (4) \quad 8$

$\{x^{3} + \sin x\} =$ $3x^{2} + \sin x$ distribution arithmetic monomorphics	of 6, 4 ean is (2) media	, 8, 3 occur w 5.25 n of a unin is	vith fre (3) modal	$3x^2 + \cos x$ equencies 4, 2, 4 6 grouped data 67.6	5, 7 res (4)	pectively then 6.25
$\{x^{3} + \sin x\} =$ $3x^{2} + \sin x$ distribution arithmetic mo 5 mean and	of 6, 4 ean is (2) media	, 8, 3 occur w 5.25 n of a unin	vith fre (3)	equencies 4, 2, 8 6	5, 7 res (4)	pectively then 6.25
$\{x^{3} + \sin x\} =$ $3x^{2} + \sin x$ $distribution$ arithmetic metic	of 6, 4 ean is	, 8, 3 occur w	vith fre	equencies 4, 2, 8	5, 7 res	pectively then
$\{x^{3} + \sin x\} =$ $3x^{2} + \sin x$ distribution	of 6, 4					
$\{x^3 + \sin x\} =$	(2)	$3x + \cos x$	(3)	$3x^2 + \cos x$	(4)	$x^2 + \cos x$
1/2	(2)	1	(3)	2	(4)	0
$\frac{x}{\sqrt{1+x} - \sqrt{1-x}}$	= = c					
1	(2)	2	(3)	3	(4)	4
number of so	lution	s of $x^2 - 7 x $	+12=	0 is		
$\{-2, 4\}$			(4)	$\{-1, 0, 1, 2, 3\}$		
			(2)	$\{x \in R : -2 \le x\}$	$x \le y$	
$R: x-1 =3\}$	=					
$p \lor (\Box q)$	(2)	$p \land (\Box q)$	(3)	$(p) \wedge \Box q$	(4)	$p \wedge \Box q$
and q are two	o state	ments a tauto	ology a	mong the follow	wing is	
and Q are tw $p \wedge q$						
			. ,			
-			(2) (4)		not syn	
				e relation $\leq n$ l	Vis	12.0
	an equivale symmetric b and Q are two $p \land q$ and q are two $p \lor (\Box q)$ R : x - 1 = 3 $\{x \in R : -2 < \{-2, 4\}$ number of so 1 $\frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}$	an equivalence relision symmetric but not and Q are two states $p \land q$ (2) and q are two states $p \lor (\Box q)$ (2) $R: x-1 =3 \} =$	an equivalence relation symmetric but not reflective and Q are two statements then the $p \land q$ (2) $p \lor q$ and q are two statements a tautor $p \lor (\Box q)$ (2) $p \land (\Box q)$ $R : x - 1 = 3 \} =$	an equivalence relation (2) symmetric but not reflective (4) and Q are two statements then the symphy $p \land q$ (2) $p \lor q$ (3) and q are two statements a tautology at $p \lor (\Box q)$ (2) $p \land (\Box q)$ (3) $R : x - 1 = 3 \} =$	an equivalence relation (2) reflexive but it symmetric but not reflective (4) neither reflex and Q are two statements then the symbolic form of " $p \land q$ (2) $p \lor q$ (3) $p \land \Box q$ and q are two statements a tautology among the follow $p \lor (\Box q)$ (2) $p \land (\Box q)$ (3) $(p) \land \Box q$ $R : x-1 =3 \} =$	and Q are two statements then the symbolic form of " p " and $p \land q$ (2) $p \lor q$ (3) $p \land \Box q$ (4) and q are two statements a tautology among the following is $p \lor (\Box q)$ (2) $p \land (\Box q)$ (3) $(p) \land \Box q$ (4) $R : x - 1 = 3 \} =$

- 143. The standard deviation of -3, -2, -1, 0, 1, 2, 3 is
 - (1) $\mathbf{2}$ (2)4 (3) 6
- StudentBounty.com 144. If a, g and h respectively denote the Arithmetic Mean, Geometric Mean and Harmonic Mean of data then

(4)

- (1)a = g = h(2) $a \ge g \ge h$ (3) $g \ge h \ge a$ (4) g = ah
- 145. If the average of 1, 4, 9, x, 25, 36 and 49 is 20 then x = -(2)(1)4025(3)16(4) 9
- 146. The probability of getting at least two heads when an unbiased coin is tossed thrice is
 - (2) $\frac{1}{4}$ (3) $\frac{1}{2}$ (4) $\frac{7}{8}$ (1)
- 147. A natural number is choosen at random from 1 to 50. The probability of getting a prime number is
 - (1)0.1(2)0.2(3)0.3(4) 0.7
- 148. The probability of drawing a card which is a spade or king from a well shuffeled pack of cards is
 - $\frac{35}{52}$ (3) $\frac{17}{52}$ $\frac{16}{52}$ 36 (4) (2) (1)52
- 149. The probability of getting at least one 6 when two unblased dice are thrown together.
 - $\frac{11}{36}$ (3) $\frac{12}{36}$ 1013(2)(1)(4) 36 36
- 150. If A and B are events such that P(A) = 0.3, P(B) = 0.2 and $P(A \cap B) = 0.1$ then $P(A \cup B) = ----$
 - (2) 0.4 0 (1)0.6 (3)0.2(4)

MB/MCCET 2011

20

SECTION C

COMMUNICATION ABILITY

50 Marks

PART I

Directions (151 to 155) : Read the following passages and answer the questions that follow:

The perpetuation of the status hierarchy based on the concept of men as 'superior' and women as 'inferior' has made many women subservient, self-effacing and fatalist. This hierarchy is still being maintained in our male-dominated society. Even now a woman is defined not in terms of her performance but in relation to man. She is projected as weak, passive, home-oriented woman, less intelligent and less capable than man, and thus enshrined in mythology, symbolism and stereotype ideals. Because of such discrimination in treatment from childhood, women develop a deep seated tendency to under-estimate their own talents and powers and this complex has become a stumbling block in their aspiring for the economic emancipation and equal social status alongside men.

One of the basic requirements for entrepreneurship is self-confidence. Although women are as qualified as men to succeed as entrepreneurs, they suffer from two distinct disadvantages. The first is the initial lack of confidence in their own abilities. The second disadvantage is society's lack of confidence in women's ability.

- 151. The hierarchical order of a male-dominated society leads to
 - (1) the promotion of a feeling of inferiority in men and women.
 - (2) the lack of confidence in their abilities as built up in women by themselves and by society.
 - (3) the lack of confidence in women's abilities as developed by women, as against society's confidence in them.
 - (4) Society's lack of confidence in women as against women's self-confidence.
- 152. Women's diffidence and inferiority, as the passage cites, have resulted in
 - (1) their gaining of equal social status with men.
 - (2) their seeking of economic emancipation.
 - (3) their under-estimation of their talents.
 - (4) their entrepreneurial ability.

StudentBounty.com

153. According to this passage, even now a woman is considered

- (1)active strong (2)
- (3)less capable than men (4)

154. A quality necessary for entrepreneurship is

- superiority complex (2)self-confidence (1)
- (3)inferiority complex (4) stereotypical ideals.
- 155. A women is defined
 - (1)in relation to man
 - (3)as superior (4) in terms of efficiency

Read the passage and answer questions (156 to 160):

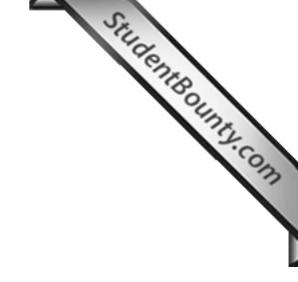
Genetics is a science about to become a technology. In this century, developments in genetics will be accelerating. This technology will lead to the ability to design plants and animals to perform human functions. In agriculture, scientists will be able to produce plants which have improved photosynthetic efficiency, minimum water requirements, self-fertilising characteristics and a desired spectrum of nutrient qualities. In mining, organisms will metabolize desired metals and thus concentrate them for later 'harvesting'. The production of pharmaceuticals, micro-organisms will be used as factory workers to produce chemicals normally found only in natural body and plant processes.

Finally, in medicine, scientists will intervene in the process by which genetic disease - such as sickle cell anaemia. Tay Sachs diseases, and mongolism - are passed from parents to progeny, to cure these diseases before conception. Ultimately this science of genetics, which will prove so important, will give us the ability to design animals, including ourselves.

- 156. In the Pharmaceutical industry
 - (1)factory workers use micro-organisms
 - micro organisms use factory workers (2)
 - (3)micro-organisms are used as factory workers
 - (4) factory workers produce chemicals
- 157. One of the uses of genetics is that it
 - helps in the cure of genetic diseases (1)
 - helps in accelerating technology to grow into a science (2)
 - (3)helps in the mining of metals
 - (4) converts metals into manures

- StudentBounts.com intelligent
- (2)in terms of performance

158. In the field of agriculture, genetics performs the function of


- (1)reducing photosynthetic activity
- (2)increasing water requirements
- (3)promoting self-fertilizing characteristics
- StudentBounty.com (4)reducing the nutritional quality of the product harvested
- 159. Genetics will help man by
 - replacing robots with animals (1)
 - (2)designing healthier people
 - (3)designing technologies to take over man's work
 - making man's future safe (4)
- 160. Genetically designed animals will be able to
 - (1)outperform man
 - (2)takeover human functions
 - (3)reduce man's dependence on technology
 - (4) provide the desired spectrum of nutrient qualities

Read the passage and answer questions (161 to 165):

There is a great scope for educating people to maximize efficient use of resources. For instance, 5 per cent of fuel used for vehicles can be saved if drivers are given proper training in correct and energy efficient driving habits : don't press the accelerator unnecessarily, avoid braking suddenly, slow down earlier, etc. But dies a normal driver know that these factors are connected with the thermodynamics of engines and fuel burning? Similarly, if the Stove's flame is kept at a level that will prevent it lapping around the sides of the vessel and just be under the pot, though it may take a few minutes more to cook food, there will be a considerable saving of precious gas. Such wastage exacts' heavy price on the economy. Marketing communication skills can be deployed very effectively to impart continual training to our workface and curb such wastage. That will be an excellent service industry itself.

161. An excellent service industry can grow out of

- (1)motor vehicle industry
- regular training to workforce (2)
- (3)our economy
- (4) a study of the wastage phenomenon

162. The thermodynamics of engine and fuel burning is

- (1) common knowledge among drivers
- (2) not normally known to drivers
- (3) entirely unknown to drivers
- (4) well known to drivers

163. A level flame

- (1) cooks food faster (2) wastes gas
- (3) saves gas (4) hardly cooks food

164. Energy efficient driving habits result in

- (1) increased life of vehicles (2) less repairs
- (3) high speed driving (4) fuel efficiency

165. Education people is essential for

- (1) making them efficient
- (2) increasing their efficiency
- (3) mobilization of resources
- (4) increasing their efficiency in using resources

PART II

(3)

Heavenly

(4)

Joyous

Choose the correct meaning for the word (Q.166 to 170):

- 166. CELIBATE(1) Unmarried (2) Leafy
- 167. PENDULOUS
 (1) Heavy
 (2) Hanging down loosely
 (3) Tawdry
 (4) Contrite
- 168. BIBULOUS
 - (1) Addicted to drink (2) talkative
 - (3) well-dressed (4) frothy

							StudentBounty.com
							1 Ce
							(The
							ill.
169.	NON	MADIC					2
	(1)	Wandering			(2)	Fierce	(On
	(3)	Equestrian			(4)	Lawless	2
170.	LEV	ΊΤΥ					
	(1)	Frivolity			(2)	Increase	
	(3)	Fermentatio	n		(4)	Forgetfulness	5
	Dire	ections (Q.17	'1 to 1	75) : Fill in	the bl	ank choosing	correct answer:
171.	The	magistrate —		ever	ry word	she said.	
	(1)	got on			(2)	got in	
	(3)	got over			(4)	got down	
172	The	epidemic —		—— whose	familie	28	
±, = .	(1)	wiped off		(11050	(2)	wiped out	
	(3)	wiped up			(4)	wiped over	
150		, ·	1	4 1	1.	• . 1	
173.		on account o		came to kn		in course of	
	(1) (3)	in the event			(2) (4)	during	
	(0)	in the event	01		(1)	uuring	
174.			er since	ere efforts, s		-	igh the examination.
	(1)	despite			(2)	inspite	
	(3)	owing to			(4)	due to	
175.	Sind	lhu was great	ly amu	.sed ———		- the performa	nce.
	(1)	by	(2)	on	(3)	at	(4) in
				РАІ	RT III		
		ections (Q.1' ase/verb/pre			l in th	e blanks wit	th the appropriate
176.	Emp	oloyees who h	ave tw	venty-five o	f servic	e become entit	tled ——— a
	pers					<u>^</u>	
	(1)	of	(2)	on	(3)	from	(4) to
177.				old frien	ds wh	en I was in	Acharya Nagarjuna
		versity last ye			(-)		
	(1)	comes across	8		(2)	come across	
	(3)	comes out			(4)	came out	
					25		MB/MCCET 2011

								Studente
								.47%
								171
178.	I ha	ve some letter	s whi	ch I must —		—— before I	leave to	night.
	(1)	clear away			(2)	clear off		
	(3)	clear up			(4)	clear out		
179.	The	Hindustan ti	mes	aspires to l	nave a n	nillion readers	3	ne:
	year							
	(1)	by	(2)	till	(3)	until	(4)	through
180.	How	v are you ——		—— with y	our wor	k?		
	(1)	get alone			(2)	getting alone	•	
	(3)	get off			(4)	getting in		
	Dire	ections (Q.18	1 to 2	190) : Fill i	n the bl	ank choosing	g the co	rrect word
181	Low	grataful			rand fatl	ner for teachin	a mo mo	thomatics
101.	(1)	to	(2)				(4) g me ma	by
	(1)	10	(2)	011	(0)	101	(1)	by
182.	The	writer accuse	s nati	onal govern	iment —	r	resorting	g to violence.
	(1)	of	(2)	for	(3)	with	(4)	on
183.	Don	't ———	— w	hen somebo	ody else i	n talking.		
	(1)	cut out	(2)	cut off	(3)	cut on	(4)	cut in
184.	He t	alks as thoug	h he -		— when	e she was.		
	(1)	knows			(2)	has known		
	(3)	knew			(4)	had known		
185	Har	dly had the ne	rform	nance hegan	I		rhts wen	t out
100.	(1)	before	(2)	than	(3)	when	(4)	none
186	She	filed a lawsui	t to ef	on the ——		— of child lab	our	
100.	(1)	expertise		op mo	(2)	extinction		
	(3)	exploitation			(4)	extravagance	e	
187	Ino	rder to —		natural	gas that	v installed extr	a inculo	tion
107.	(1)	consent	(2)	constant	(3)	contract	(4)	conserve
	(1)		(_)	cono tanti	(3)	501101400	(1)	0011001 00
MB/	мс	CET 2011			26			

								StudentBounty.com
188.	Mon	ks and nuns a	are su	pposed to lea	d a —	life.		12
	(1)	austere			(2)	prodigal		CON
	(3)	gratuitous			(4)	presumptuous		~
189.	Seve	eral ———		for global wa	rming	have been recen	tly su	ggested.
	(1)	principal	(2)	priorities	(3)	privileges	(4)	hypotheses
190.	He is	s	— of	her victory in	n the e	locution contest.		
	(1)	zealous	(2)	envy	(3)	pride	(4)	jealous

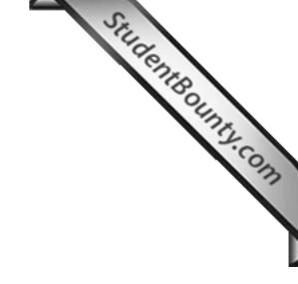
PART IV

Directions (Q. 191 to 200) : Choose the correct answer.

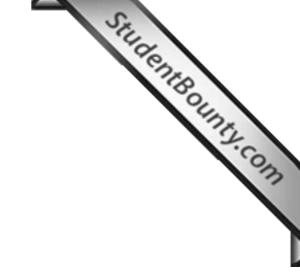
191. An Actuary is

- (1) One who presents himself
- (2) One who projects himself
- (3) One who works in a sanctuary
- (4) One who makes calculations connected with insurance

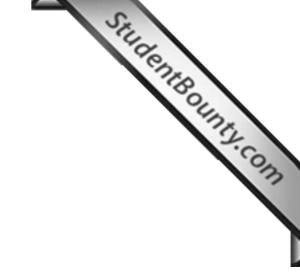
$192. \ CRR \ stands \ for$


- (1) Cash Reserve Ratio
- (2) Cumulative Reserve Ratio
- (3) Credit Requirement Ratio
- (4) Compulsory Reserve Ratio

193. MOU is the abbreviation of


- (1) Management of undertaking
- (2) Monetary output unit
- (3) Memorandum of understanding
- (4) Marketing of unsaleables

194. MS-Excel is used for


- (1) Word processing
- (2) Tabulation and number crunching
- (3) Spell check
- (4) Website creation

- 195. GUI is the abbreviation of
 - (1) Groupware User Interface
 - (2) Graphic User Interface
 - (3) Graphics User Identification
 - (4) Graphic Universal Imaging
- 196. An Icon is
 - (1) A small picture on a display screen
 - (2) An application software
 - (3) A back up system
 - (4) A computer designed car
- 197. IPO is the abbreviation of
 - (1) Initial Private Offering
 - (2) Important Public Organisation
 - (3) Initial Public Offering
 - (4) Important Public Offering
- 198. Patent means
 - (1) The sole right to manufacture and sell product
 - (2) A negotiable instrument
 - (3) An exclusive trade right
 - (4) A design
- 199. A commonly accepted proper behaviour in the Net is called
 - (1) Net manners (2) Web manners
 - (3) Net Protocols (4) Netiquette
- 200. CAD stands for
 - (1) Computer Aided Design
 - (2) Computer Arithmetic Design
 - (3) Computer Analogue Design
 - (4) Computer Architecture Development

ROUGH WORK

ROUGH WORK

							2
							THAN .
							STEP
HALL TI	CKET No. :				S	l. No.	Answer I <thi< th=""> I <thi< th=""> <thi< th=""></thi<></thi<></thi<>
			ANSWER	SHEET			12.0
Q.No.	Answer	Q.No.	Answer	Q.No.	Answer	Q.No.	Answer
1	1 2 3 4	51	1 2 3 4	101	1 2 3 4	151	
2		52		102	1 2 3 4	152	
3		53		103		153	
45	1 2 3 4 1 2 3 4	$54 \\ 55$	1 2 3 4 1 2 3 4	$\begin{array}{c} 104 \\ 105 \end{array}$	1 2 3 4 1 2 3 4	$\begin{array}{c} 154 \\ 155 \end{array}$	1 2 3 4 1 2 3 4
5 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	55		105	1 2 3 4	$155 \\ 156$	1 2 3 4 1 2 3 4
7	1 2 3 4	50 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	1 2 3 4	157	
8	1 2 3 4	58	1 2 3 4	108	1 2 3 4	158	1 2 3 4
9	1 2 3 4	59	1 2 3 4	109	1 2 3 4	159	1 2 3 4
10		60		110		160	
11		61	1 2 3 4	111	1 2 3 4	161	
12 13	1 2 3 4 1 2 3 4	$\begin{array}{c} 62 \\ 63 \end{array}$	1 2 3 4 1 2 3 4	$\frac{112}{113}$	1 2 3 4 1 2 3 4	$\begin{array}{c} 162 \\ 163 \end{array}$	1 2 3 4 1 2 3 4
13	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	63		113	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$163 \\ 164$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
15	1 2 3 4	65	1 2 3 4	115	1 2 3 4	165	
16	1 2 3 4	66	1 2 3 4	116	1 2 3 4	166	
17	1 2 3 4	67	1 2 3 4	117	1 2 3 4	167	1 2 3 4
18	1 2 3 4	68	1 2 3 4	118	1 2 3 4	168	
19		69 50		119		169	
$\begin{array}{c} 20\\ 21 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$70 \\ 71$	1 2 3 4 1 2 3 4	$\begin{array}{c} 120 \\ 121 \end{array}$	1 2 3 4 1 2 3 4	$\begin{array}{c} 170 \\ 171 \end{array}$	1 2 3 4 1 2 3 4
$\frac{21}{22}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	71 72	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$121 \\ 122$	1 2 3 4 1 2 3 4	171 172	1 2 3 4 1 2 3 4
23	1 2 3 4	73	1 2 3 4	122	1 2 3 4	172	
24	1 2 3 4	74	1 2 3 4	124	1 2 3 4	174	
25	1 2 3 4	75	1 2 3 4	125	1 2 3 4	175	1 2 3 4
26	1 2 3 4	76	1 2 3 4	126	1 2 3 4	176	1 2 3 4
27		77		127		177	
28		78 70		128		178 170	
29 30	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	79 80	1 2 3 4 1 2 3 4	$129 \\ 130$	1 2 3 4 1 2 3 4	$\begin{array}{c} 179 \\ 180 \end{array}$	1 2 3 4 1 2 3 4
31	1 2 3 4	81	1 2 3 4	130	1 2 3 4	180	
32	1 2 3 4	82	1 2 3 4	132	1 2 3 4	182	1 2 3 4
33	1 2 3 4	83	1 2 3 4	133	1 2 3 4	183	1 2 3 4
34		84	1 2 3 4	134	1 2 3 4	184	
35		85		135		185	
36 37	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{86}{87}$	1 2 3 4 1 2 3 4	$\begin{array}{c} 136\\ 137\end{array}$	1 2 3 4 1 2 3 4	$\frac{186}{187}$	1 2 3 4 1 2 3 4
37 38	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	87 88		137	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	187	
39	1 2 3 4	89	1 2 3 4	139	1 2 3 4	189	
40	1 2 3 4	90	1 2 3 4	140	1 2 3 4	190	1 2 3 4
41	1 2 3 4	91	1 2 3 4	141	1 2 3 4	191	1 2 3 4
42		92 02		142	1 2 3 4	192	
43		93 04		143	1 2 3 4 1 2 3 4	193 104	1 2 3 4 1 2 3 4
$44 \\ 45$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 94 \\ 95 \end{array}$	1 2 3 4 1 2 3 4	$\begin{array}{c} 144 \\ 145 \end{array}$	1 2 3 4 1 2 3 4	$\begin{array}{c} 194 \\ 195 \end{array}$	1 2 3 4 1 2 3 4
40	1 2 3 4	96	1 2 3 4	145	1 2 3 4	196	
47	1 2 3 4	97	1 2 3 4	147	1 2 3 4	197	1 2 3 4
48	1 2 3 4	98	1 2 3 4	148	1 2 3 4	198	1 2 3 4
49		99		149		199	
50	1 2 3 4	100	1 2 3 4	150	1234	200	1 2 3 4

Signature of the Candidate

Signature of the Invigilator