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Random Experiments

We are all familiar with the importance of experi-
ments in science and engineering. Experimentation
is useful to us because we can assume that if we
perform certain experiments under very nearly
identical conditions, we will arrive at results that
are essentially the same. In these circumstances,
we are able to control the value of the variables
that affect the outcome of the experiment.

However, in some experiments, we are not able to ascertain or con-
trol the value of certain variables so that the results will vary from one
performance of the experiment to the next, even though most of the con-
ditions are the same. These experiments are described as random. Here
is an example:

Example 1.1. If we toss a die, the result of the experiment is that it
will come up with one of the numbers in the set {1, 2, 3, 4, 5, 6}.

Sample Spaces

A set S that consists of all possible outcomes of a random experiment is
called a sample space, and each outcome is called a sample point. Often
there will be more than one sample space that can describe outcomes of
an experiment, but there is usually only one that will provide the most
information.

Example 1.2. If we toss a die, then one sample space is given by 
{1, 2, 3, 4, 5, 6} while another is {even, odd}. It is clear, however, that
the latter would not be adequate to determine, for example, whether an
outcome is divisible by 3.

If is often useful to portray a sample space graphically. In such cases,
it is desirable to use numbers in place of letters whenever possible.

2 PROBABILITY AND STATISTICS



If a sample space has a finite number of points, it is called a finite
sample space. If it has as many points as there are natural numbers 1, 2,
3, …. , it is called a countably infinite sample space. If it has as many
points as there are in some interval on the x axis, such as 0 ≤ x ≤ 1, it is
called a noncountably infinite sample space. A sample space that is
finite or countably finite is often called a discrete sample space, while
one that is noncountably infinite is called a nondiscrete sample space.

Example 1.3. The sample space resulting from tossing a die yields
a discrete sample space. However, picking any number, not just inte-
gers, from 1 to 10, yields a nondiscrete sample space.

Events

An event is a subset A of the sample space S, i.e., it is a set of possible
outcomes. If the outcome of an experiment is an element of A, we say
that the event A has occurred. An event consisting of a single point of S
is called a simple or elementary event.

As particular events, we have S itself, which is the sure or certain
event since an element of S must occur, and the empty set ∅, which is
called the impossible event because an element of ∅ cannot occur.

By using set operations on events in S, we can obtain other events
in S. For example, if A and B are events, then

1. A ∪ B is the event “either A or B or both.” A ∪ B is called the
union of A and B.

2. A ∩ B is the event “both A and B.” A ∩ B is called the inter-
section of A and B.

3. is the event “not A.” is called the complement of A.

4. A – B = A ∩ is the event “A but not B.” In particular, =
S – A.

If the sets corresponding to events A and B are disjoint, i.e., A ∩ B
= ∅, we often say that the events are mutually exclusive. This means
that they cannot both occur. We say that a collection of events A1, A2, … ,

An is mutually exclusive if every pair in the collection is mutually exclu-

sive.

′A′B

′A′A
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The Concept of Probability

In any random experiment there is always uncertainty as to whether a
particular event will or will not occur. As a measure of the chance, or
probability, with which we can expect the event to occur, it is conve-
nient to assign a number between 0 and 1. If we are sure or certain that
an event will occur, we say that its probability is 100% or 1. If we are
sure that the event will not occur, we say that its probability is zero. If,
for example, the probability is ¹⁄� , we would say that there is a 25%
chance it will occur and a 75% chance that it will not occur.
Equivalently, we can say that the odds against occurrence are 75% to
25%, or 3 to 1.

There are two important procedures by means of which we can esti-
mate the probability of an event.

1. CLASSICAL APPROACH: If an event can occur in h
different ways out of a total of n possible ways, all of which
are equally likely, then the probability of the event is h/n.

2. FREQUENCY APPROACH: If after n repetitions of an
experiment, where n is very large, an event is observed to
occur in h of these, then the probability of the event is h/n. This
is also called the empirical probability of the event.

Both the classical and frequency approaches have serious drawbacks,
the first because the words “equally likely” are vague and the second
because the “large number” involved is vague. Because of these difficulties,
mathematicians have been led to an axiomatic approach to probability.

The Axioms of Probability

Suppose we have a sample space S. If S is discrete, all subsets corre-
spond to events and conversely; if S is nondiscrete, only special subsets
(called measurable) correspond to events. To each event A in the class
C of events, we associate a real number P(A). The P is called a proba-
bility function, and P(A) the probability of the event, if the following
axioms are satisfied.
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Axiom 1. For every event A in class C,
P(A) ≥ 0

Axiom 2. For the sure or certain event S in the class C,
P(S) = 1

Axiom 3. For any number of mutually exclusive events A1, A2, …,
in the class C,
P(A1 ∪ A2 ∪ … ) = P(A1) + P(A2) + …

In particular, for two mutually exclusive events A1 and A2 ,

P(A1 ∪ A2 ) = P(A1) + P(A2)

Some Important Theorems on Probability

From the above axioms we can now prove various theorems on proba-
bility that are important in further work.

Theorem 1-1: If A1 ⊂ A2 , then                                                  (1)
P(A1) ≤ P(A2) and P(A2 − A1) = P(A1) − P(A2)

Theorem 1-2: For every event A,                                               (2)
0 ≤ P(A) ≤ 1,

i.e., a probability between 0 and 1.

Theorem 1-3: For ∅, the empty set,                                          (3)
P(∅) = 0

i.e., the impossible event has probability zero.

Theorem 1-4: If is the complement of A, then                       (4)
P( ) = 1 – P(A)

Theorem 1-5: If A = A1 ∪ A2 ∪ … ∪ An , where A1, A2, … , An are 
mutually exclusive events, then

P(A) = P(A1) + P(A2) + … + P(An)                    (5)

′A
′A
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Theorem 1-6: If A and B are any two events, then               (6)
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
More generally, if A1, A2, A3 are any three events, 

then 
P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3) – 

P(A1 ∩ A2) – P(A2 ∩ A3) – P(A3 ∩ A1) +
P(A1 ∩ A2 ∩ A3).

Generalizations to n events can also be made.

Theorem 1-7: For any events A and B,                                       (7)

P(A) = P(A ∩ B) + P(A ∩ )

Assignment of Probabilities

If a sample space S consists of a finite number of outcomes a1, a2, … ,

an, then by Theorem 1-5,

P(A1) + P(A2) + … + P(An) = 1                (8)

where A1, A2, … , An are elementary events given by Ai = {ai}.

It follows that we can arbitrarily choose any nonnegative numbers
for the probabilities of these simple events as long as the previous equa-
tion is satisfied. In particular, if we assume equal probabilities for all
simple events, then 

,      k = 1, 2, … , n (9)

And if A is any event made up of h such simple events, we
have

(10)

This is equivalent to the classical approach to probability. We could
of course use other procedures for assigning probabilities, such as fre-
quency approach.

P A
h

n
( ) =

P A
nk( ) = 1

′B
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Assigning probabilities provides a mathematical model, the success
of which must be tested by experiment in much the same manner that
the theories in physics or others sciences must be tested by experiment.

Conditional Probability

Let A and B be two events such that P(A) > 0. Denote P(B | A) the prob-
ability of B given that A has occurred. Since A is known to have
occurred, it becomes the new sample space replacing the original S.
From this we are led to the definition

(11)

or
(12)

In words, this is saying that the probability that both A and B occur
is equal to the probability that A occurs times the probability that B
occurs given that A has occurred. We call P(B | A) the conditional prob-
ability of B given A, i.e., the probability that B will occur given that A
has occurred. It is easy to show that conditional probability satisfies the
axioms of probability previously discussed.

Theorem on Conditional Probability

Theorem 1-8: For any three events A1, A2, A3, we have

= (13)P A P A A P A A A( ) ( | ) ( | )1 2 1 3 1 2∩P A A A( )1 2 3∩ ∩

P A B P A P B A( ) ( ) ( | )∩ ≡

P B A
P A B

P A
( | )

( )

( )
≡ ∩
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In words, the probability that A1 and A2 and A3 all occur is equal
to the probability that A1 occurs times the probability that A2 occurs
given that A1 has occurred times the probability that A3 occurs given
that both A1 and A2 have occurred. The result is easily generalized to n
events.

Theorem 1-9: If an event A must result in one of the mutually
exclusive events A1 , A2 , … , An , then P(A) 

= P(A1)P(A | A1) + P(A2)P(A | A2) +...

+ P(An)P(A | An) (14)

Independent Events

If P(B | A) = P(B), i.e., the probability of B occurring is not affected by
the occurrence or nonoccurrence of A, then we say that A and B are
independent events. This is equivalent to

(15)

Notice also that if this equation holds, then A and B are indepen-
dent.

We say that three events A1, A2, A3 are independent if they are
pairwise independent.

P(Aj ∩ Ak) = P(Aj)P(Ak) j ≠ k where j,k = 1,2,3 (16)

and

(17)

Both of these properties must hold in order for the events to be
independent. Independence of more than three events is easily
defined.

P A A A P A P A P A( ) ( ) ( ) ( )1 2 3 1 2 3∩ ∩ =

P A B P A P B( ) ( ) ( )∩ =
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Bayes’ Theorem or Rule

Suppose that A1, A2, … , An are mutually exclusive events whose union
is the sample space S, i.e., one of the events must occur. Then if A is any
event, we have the important theorem:

Theorem 1-10 (Bayes’ Rule):

(18)

This enables us to find the probabilities of the various events A1,
A2, … , An that can occur. For this reason Bayes’ theorem is often
referred to as a theorem on the probability of causes.

Combinatorial Analysis

In many cases the number of sample points
in a sample space is not very large, and so
direct enumeration or counting of sample
points needed to obtain probabilities is not
difficult. However, problems arise where
direct counting becomes a practical impos-
sibility. In such cases use is made of combinatorial analysis, which
could also be called a sophisticated way of counting.

P A A
P A P A A

P A P A A
k

k k

j j
j

n( | )
( ) ( | )

( ) ( | )

=

=
∑

1
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Fundamental Principle of Counting

If one thing can be accomplished n1 different ways and after this a sec-

ond thing can be accomplished n2 different ways, … , and finally a kth

thing can be accomplished in nk different ways, then all k things can be

accomplished in the specified order in n1n2…nk different ways.

Permutations

Suppose that we are given n distinct objects and wish to arrange r of
these objects in a line. Since there are n ways of choosing the first
object, and after this is done, n – 1 ways of choosing the second object,
… , and finally n – r + 1 ways of choosing the rth object, it follows by
the fundamental principle of counting that the number of different
arrangements, or permutations as they are often called, is given by

(19)

where it is noted that the product has r factors. We call nPr the number

of permutations of n objects taken r at a time.

Example 1.4. It is required to seat 5 men and 4 women in a row so
that the women occupy the even places. How many such arrangements
are possible?

The men may be seated in 5P5 ways, and the women 4P4 ways. Each

arrangement of the men may be associated with each arrangement of the
women. Hence,

Number of arrangements = 5P5, 4P4 = 5! 4! = (120)(24) = 2880

In the particular case when r = n, this becomes

(20)n nP n n n n= − − =( )( )... !1 2 1

n rP n n n r= − − +( )...( )1 1
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which is called n factorial. We can write this formula in terms of facto-
rials as

(21)

If r = n, we see that the two previous equations agree only if
we have 0! = 1, and we shall actually take this as the definition of 0!.

Suppose that a set consists of n objects of which n1 are of one
type (i.e., indistinguishable from each other), n2 are of a second type, … ,
nk are of a kth type. Here, of course, . Then the
number of different permutations of the objects is

(22)

Combinations

In a permutation we are interested in the order of arrangements of the
objects. For example, abc is a different permutation from bca. In many
problems, however, we are only interested in selecting or choosing
objects without regard to order. Such selections are called combina-
tions. For example, abc and bca are the same combination.

The total number of combinations of r objects selected from n (also
called the combinations of n things taken r at a time) is denoted by nCr

or . We have

(23)

It can also be written

(24)

It is easy to show that

n

r
n n n r

r

P

r
n r





= − − + =( ) ( )

! !

1 1L

n

r
C

n

r n rn r






= =
−
!

!( )!

n

r






n n n n
k

P
n

n n nk1 2 1 2
, ,...,

!

! ! !
=

L

n n n nk= + + +1 2 ...

n rP
n

n r
=

−
!

( )!
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or   (25)

Example 1.5. From 7 consonants and 5 vowels, how many words
can be formed consisting of 4 different consonants and 3 different vow-
els? The words need not have meaning.

The four different consonants can be selected in 7C4 ways, the three dif-
ferent vowels can be selected in 5C3 ways, and the resulting 7 different
letters can then be arranged among themselves in 7P7 = 7! ways. Then

Number of words = 7C4 · 5C3· 7! = 35·10·5040 = 1,764,000

Binomial Coefficients

The numbers from the combinations formula are often called binomial
coefficients because they arise in the binomial expansion

(26)

Stirling’s Approximation to n!

When n is large, a direct evaluation of n! may be impractical. In such
cases, use can be made of the approximate formula

(27)

where e = 2.71828 … , which is the base of natural logarithms. The
symbol ~ means that the ratio of the left side to the right side approach-
es 1 as n → ∞.

n n n en n~ 2π −

( )x y x
n

x y
n

x y
n

n
yn n n n n+ = + 





+ 





+ + 





− −

1 2
1 2 2 L

n r n n rC C= −

n

r

n

n r






=
−
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Computing technology has largely eclipsed the value of Stirling’s
formula for numerical computations, but the approximation remains
valuable for theoretical estimates (see Appendix A).
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Descriptive Statistics

When giving a report on a data set, it is useful to describe the data set
with terms familiar to most people. Therefore, we shall develop widely
accepted terms that can help describe a data set. We shall discuss ways
to describe the center, spread, and shape of a given data set.

Chapter 2

DESCRIPTIVE
STATISTICS

14
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Measures of Central Tendency

A measure of central tendency gives a single value that acts as a repre-
sentative or average of the values of all the outcomes of your experi-
ment. The main measure of central tendency we will use is the arith-
metic mean. While the mean is used the most, two other measures of
central tendency are also employed. These are the median and the mode.

Mean

If we are given a set of n numbers, say x1, x2, … , xn, then the mean, usu-
ally denoted by x̄ or µ , is given by

(1)

Example 2.1. Consider the following set of integers:

S = {1, 2, 3, 4, 5, 6, 7, 8, 9}

The mean, x̄ , of the set S is

x
x x x

n
n= + +1 2 L

CHAPTER 2: Descriptive Statistics 15
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There are many ways to measure the central tendency of a

data set, with the most common being the arithmetic mean,

the median, and the mode. Each has advantages and dis-

advantages, depending on the data and the intended pur-

pose.



Median

The median is that value x for which and . 

In other words, the median is the value where half of the values of x1,

x2, … , xn are larger than the median, and half of the values of x1, x2, … ,

xn are smaller than the median.

Example 2.2. Consider the following set of integers:

S = {1, 6, 3, 8, 2, 4, 9}

If we want to find the median, we need to find the value, x, where
half the values are above x and half the values are below x. Begin by
ordering the list:

S = {1, 2, 3, 4, 6, 8, 9}

Notice that the value 4 has three scores below it and three
scores above it. Therefore, the median, in this example, is 4.

In some instances, it is quite possible that the value of the
median will not be one of your observed values. 

Example 2.3. Consider the following set of integers:

S = {1, 2, 3, 4, 6, 8, 9, 12}

Since the set is already ordered, we can
skip that step, but if you notice, we don’t
have just one value in the middle of the list.
Instead, we have two values, namely 4 and
6. Therefore, the median can be any number

P X x( )> ≤ 1

2
P X x( )< ≤ 1

2

x = + + + + + + + + =1 2 3 4 5 6 7 8 9

9
5
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between 4 and 6. In most cases, the average of the two numbers is
reported. So, the median for this set of integers is

In general, if we have n ordered data points, and n is an odd
number, then the median is the data point located exactly in the middle

of the set. This can be found in location of your set. If n is an

even number, then the median is the average of the two middle terms of

the ordered set. These can be found in locations and +1.

Mode

The mode of a data set is the value that occurs most often, or in other
words, has the most probability of occurring. Sometimes we can have
two, three, or more values that have relatively large probabilities of
occurrence. In such cases, we say that the distribution is bimodal, tri-
modal, or multimodal, respectively.

Example 2.4. Consider the following rolls of a ten-sided die:

R = {2, 8, 1, 9, 5, 2, 7, 2, 7, 9, 4, 7, 1, 5, 2}

The number that appears the most is the number 2. It appears four
times. Therefore, the mode for the set R is the number 2. 

Note that if the number 7 had appeared one more time, it would
have been present four times as well. In this case, we would have had a
bimodal distribution, with 2 and 7 as the modes.

n

2
n

2

n +1

2

4 6

2
5

+ =
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Measures of Dispersion

Consider the following two sets of integers:

S = {5, 5, 5, 5, 5, 5}  and  R = {0, 0, 0, 10, 10, 10}

If we calculated the mean for both S and R, we
would get the number 5 both times. However, these are
two vastly different data sets. Therefore we need another
descriptive statistic besides a measure of central tenden-
cy, which we shall call a measure of dispersion. We shall
measure the dispersion or scatter of the values of our
data set about the mean of the data set. If the values tend
to be concentrated near the mean, then this measure shall
be small, while if the values of the data set tend to be dis-
tributed far from the mean, then the measure will be
large. The two measures of dispersions that are usually
used are called the variance and standard deviation.

Variance and Standard Deviation

A quantity of great importance in probability and statistics is called the
variance. The variance, denoted by σ2, for a set of n numbers x1, x2, … ,
xn, is given by

(2)

The variance is a nonnegative number. The positive square
root of the variance is called the standard deviation.

Example 2.5. Find the variance and standard deviation for the fol-
lowing set of test scores:

T = {75, 80, 82, 87, 96}

σ µ µ µ2 1
2

2
2 2

= − + − + + −[( ) ( ) ( ) ]x x x

n
nL
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Since we are measuring dispersion about the mean, we will need to
find the mean for this data set.

Using the mean, we can now find the variance.

Which leads to the following:

Therefore, the variance for this set of test scores is 50.8. To get the
standard deviation, denoted by σ, simply take the square root of the
variance.

The variance and standard deviation are generally the most used
quantities to report the measure of dispersion. However, there are other
quantities that can also be reported.

σ σ= = =2 50 8 7 1274118. .

σ 2 81 16 4 9 144

5
50 8= + + + + =[( ) ( ) ( ) ( ) ( )]

.

σ 2
2 2 2 2 275 84 80 84 82 84 87 84 96 84

5
= − + − + − + − + −[( ) ( ) ( ) ( ) ( ) ]

µ = + + + + =75 80 82 87 96

5
84
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You Need to Know  �
It is also widely accepted to divide the variance by (n − 1)

as opposed to n. While this leads to a different result, as

n gets large, the difference becomes minimal.



Percentiles

It is often convenient to subdivide your ordered data set by use of ordi-
nates so that the amount of data points less than the ordinate is some
percentage of the total amount of observations. The values correspond-
ing to such areas are called percentile values, or briefly, percentiles.
Thus, for example, the percentage of scores that fall below the ordinate
at xα is α. For instance, the amount of scores less than x0.10 would be

0.10 or 10%, and x0.10 would be called the 10th percentile. Another

example is the median. Since half the data points fall below the medi-
an, it is the 50th percentile (or fifth decile), and can be denoted by x0.50 .

The 25th percentile is often thought of as the median of the scores
below the median, and the 75th percentile is often thought of as the
median of the scores above the median. The 25th percentile is called the
first quartile, while the 75th percentile is called the third quartile. As you
can imagine, the median is also known as the second quartile.

Interquartile Range

Another measure of dispersion is the interquartile range. The interquar-
tile range is defined to be the first quartile subtracted from the third
quartile. In other words, x0.75 − x0.25

Example 2.6. Find the interquartile range from the following set of
golf scores:

S = {67, 69, 70, 71, 74, 77, 78, 82, 89}

Since we have nine data points, and the set is ordered, the median is

located in position , or the 5th position. That means that the medi-

an for this set is 74. 

The first quartile, x0.25, is the median of the scores below the fifth

9 1

2

+
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position. Since we have four scores, the median is the average of the
second and third score, which leads us to x0.25 = 69.5.

The third quartile, x0.75, is the median of the scores above the fifth

position. Since we have four scores, the median is the average of the
seventh and eighth score, which leads us to x0.75 = 80.

Finally, the interquartile range is x0.75 − x0.25 = 80 − 69.5 = 11.5.
One final measure of dispersion that is worth mentioning is the

semiinterquartile range. As the name suggests, this is simply half of the
interquartile range.

Example 2.7. Find the semiinterquartile range for the previous data
set.

Skewness 

The final descriptive statistics we will address in this section deals with
the distribution of scores in your data set. For instance, you might have
a symmetrical data set, or a data set that is evenly distributed, or a data
set with more high values than low values.

Often a distribution is not symmetric about any value, but
instead has a few more higher values, or a few more lower values. If the
data set has a few more higher values, then it is said to be skewed to the
right.

Figure 2-1
Skewed to the right.

1

2

1

2
80 69 5 5 750 75 0 25( ) ( . ) .. .x x− = − =
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If the data set has a few more lower values, then it is said to be skewed
to the left.

Figure 2-2
Skewed to the left.

22 PROBABILITY AND STATISTICS

Important!

If a data set is skewed to the right or to the left, then there

is a greater chance that an outlier may be in your data set.

Outliers can greatly affect the mean and standard deviation

of a data set. So, if your data set is skewed, you might want

to think about using different measures of central tendency

and dispersion!
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Random Variables

Suppose that to each point of a sample space we assign a number. We
then have a function defined on the sample space. This function is called
a random variable (or stochastic variable) or more precisely, a random
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function (stochastic function). It is usually
denoted by a capital letter such as X or Y. In
general, a random variable has some speci-
fied physical, geometrical, or other signifi-
cance.

A random variable that takes on a finite
or countably infinite number of values is
called a discrete random variable while one
that takes on a noncountably infinite number
of values is called a nondiscrete random variable.

Discrete Probability Distribution

Let X be a discrete random variable, and suppose that the possible val-
ues that it can assume are given by x1, x2, x3, … , arranged in some order.

Suppose also that these values are assumed with probabilities given by

(1)

It is convenient to introduce the probability function, also referred
to as probability distribution, given by

(2)

For x = xk , this reduces to our previous equation, while for other
values of x, f(x) = 0.

In general, f(x) is a probability function if

1.

2. f x
x

( ) =∑ 1

f x( ) ≥ 0

P X x f x( ) ( )= =

P X x f x kk k( ) ( ) , ,= = = 1 2 K
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where the sum in the second property above is taken over all possible
values of x.

Example 3.1. Suppose that a coin is tossed twice. Let X represent
the number of heads that can come up. With each sample point we can
associate a number for X as follows:

Sample Point HH HT TH TT

X 2 1 1 0

Now we can find the probability function corresponding to
the random variable X. Assuming the coin is fair, we have

Then

Thus, the probability function is given by

x 0 1 2

f(x) 1/4 1/2 1/4

Distribution Functions for Random Variables

The cumulative distribution function, or briefly the distribution func-
tion, for a random variable X is defined by

P X P HH( ) ( )= = =2
1

4

P X P HT TH P HT P TH( ) ( ) ( ) ( )= = ∪ = + = + =1
1

4

1

4

1

2

P X P TT( ) ( )= = =0
1

4

P HH P HT P TH P TT( ) ( ) ( ) ( )= = = =1

4

1

4

1

4

1

4
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(3)

where x is any real number, i.e., −∞ ≤ x ≤ ∞.
In words, the cumulative distribution function will determine

the probability that the random variable will take on any value x or less.

The distribution function F(x) has the following properties:

1. F(x) is nondecreasing [i.e., F(x) ≤ F(y) if x ≤ y].

2.

3. F(x) is continuous from the right [i.e., 
for all x].

Distribution Functions for 

Discrete Random Variables

The distribution function for a discrete random variable X can be
obtained from its probability function by noting that, for all x in (-∞,∞),

(4)

It is clear that the probability function of a discrete random variable
can be obtained from the distribution function noting that

(5)f x F x F u
u x

( ) ( ) lim ( )= −
→ −

F x

f x

f x f x

f x f x

x x

x x x

x x x

x xn n

( )

( )

( ) ( )

( ) ( )

= +

+

−∞ < <
≤ <
≤ <

≤ < ∞














0

1

1 2

1

1

1 2

2 3

M

L

M

lim ( ) ( )
x

F x h F x
→ +

+ =
0

lim ( ) ; lim ( )
x x

F x F x
→−∞ →∞

= =0 1

F x P X x( ) ( )= ≤

26 PROBABILITY AND STATISTICS



Expected Values

A very important concept in probability and statistics is that of mathe-
matical expectation, expected value, or briefly the expectation, of a ran-
dom variable. For a discrete random variable X having the possible val-
ues x1, x2, …, xn, the expectation of X is defined as

(6)

or equivalently, if ,

(7)

where the last summation is taken over all appropriate values of x. 
Notice that when the probabilities are all equal,

(8)

which is simply the mean of x1, x2, …, xn .

Example 3.2. Suppose that a game is to be played with a single die
assumed fair. In this game a player wins $20 if a 2 turns up; $40 if a 4
turns up; loses $30 if a 6 turns up; while the player neither wins nor
loses if any other face turns up. Find the expected sum of money to be
won.

Let X be the random variable giving the amount of money won on
any toss. The possible amounts won when the die turns up 1, 2, …, 6
are x1, x2, …, x6, respectively, while the probabilities of these are f(x1),

f(x2), …, f(x6). The probability function for X is given by:

E X
x x x

n
n( ) = + +1 2 L

E X x f x x f x x f x xf xn n j j
xj

n

( ) ( ) ( ) ( ) ( )= + + = = ∑∑
=

1 1
1

L

P x x f xj j( ) ( )= =

E X x P X x x P X x x P X xn n j j
j

n

( ) ( ) ( ) ( )= = + + = = =
=
∑1 1

1

L
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x 0 +20 0 +40 0 −30
f(x) 1/6 1/6 1/6 1/6 1/6 1/6

Therefore, the expected value, or expectation, is

It follows that the player can expect to win $5. In a fair
game, therefore, the player should expect to pay $5 in order to play
the game.

Variance and Standard Deviation

We have already noted that the expectation of a random variable X is
often called the mean and can be denoted by µ. As we noted in Chapter
Two, another quantity of great importance in probability and statistics is
the variance. If X is a discrete random variable taking the values x1, x2,
…, xn, and having probability function f(x), then the variance is given
by

(9)

In the special case where all the probabilities are equal, we have

σ µ µ µX j j
j

n

x

E X x f x x f x2 2 2

1

2= −[ ] = − = −
=
∑ ∑( ) ( ) ( ) ( ) ( )
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Remember 
The expected value of a discrete ran-
dom variable is its measure of central
tendency!

E X( ) ( ) ( ) ( ) ( ) ( ) ( )= 



 + 



 + 



 + 



 + 



 + − 



 =0

1

6
20

1

6
0

1

6
40

1

6
0

1

6
30

1

6
5



(10)

which is the variance we found for a set of n numbers values x1, x2, 

… , xn.

Example 3.3. Find the variance for the game played in Example
3.2.

Recall the probability function for the game:

xj 0 +20 0 +40 0 −30

f(xj) 1/6 1/6 1/6 1/6 1/6 1/6

We have already found the mean to be µ = 5, therefore, the variance is
given by

The standard deviation can be found by simply taking the square root of
the variance. Therefore, the standard deviation is

Notice that if X has certain dimensions or units, such
as centimeters (cm), then the variance of X has units cm2

while the standard deviation has the same unit as X, i.e.,
cm. It is for this reason that the standard deviation is
often used.

σ X = =458 333 21 40872096. .

σ X
2 2 2 2 2

2 2

0 5
1

6
20 5

1

6
0 5

1

6
40 5

1

6

0 5
1

6
30 5

1

6

2750

6
458 333

= − 



 + − 



 + − 



 + − 





+ − 



 + − − 



 = =

( ) ( ) ( ) ( )

( ) ( ) .

σ µ µ µ
X

nx x x

n
2 1

2
2

2 2

= − + − + + −( ) ( ) ( )L
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Some Theorems on Expectation

Theorem 3-1: If c is any constant, then 

(11)

Theorem 3-2: If X and Y are any random variables, then          

(12)

Theorem 3-3: If X and Y are independent random variables, then 

(13)

Some Theorems on Variance

Theorem 3-4:

(14)

where .µ = E X( )

σ µ µ2 2 2 2 2 2= − = − = −E X E X E X E X[( ) ] ( ) ( ) [ ( )]

E XY E X E Y( ) ( ) ( )=

E X Y E X E Y( ) ( ) ( )+ = +

E cX cE X( ) ( )=
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Note!

These properties hold for any random variable, not just dis-

crete random variables. We will examine another type of

random variable in the next chapter.



Theorem 3-5: If c is any constant,

(15)

Theorem 3-6: The quantity is a minimum when  (16)

a = µ = E(X)

Theorem 3-7: If X and Y are independent random variables,

Var(X + Y ) = Var(X) + Var(Y) or (17)

Var(X − Y ) = Var(X) + Var(Y) or

Generalizations of Theorem 3-7 to more than two independent ran-
dom variables are easily made. In words, the variance of a sum of inde-
pendent variables equals the sum of their variances.

Again, these theorems hold true for discrete and nondiscrete ran-
dom variables.

σ σ σX Y X Y− = +2 2 2

σ σ σX Y X Y+ = +2 2 2

])[( 2aXE −

)()( 2 XVarccXVar =

CHAPTER 3: Discrete Random Variables 31

Don’t Forget

These theorems apply to the vari-
ance and not to the standard devi-
ation! Make sure you convert your
standard deviation into variance
before you apply these theorems.



Example 3.4. Let X and Y be the random independent events of
rolling a fair die. Compute the expected value of X + Y, and the variance
of X + Y.

The following is the probability function for X and Y, individually:

xj 1 2 3 4 5 6

f(xj) 1/6 1/6 1/6 1/6 1/6 1/6

From this, we get the following:

mX = mY = 3.5 and

There are two ways we could compute E(X + Y) and Var(X + Y).
First, we could compute the probability distribution of X + Y, and find
the expected value and variance from there. Notice that the possible val-
ues for X + Y are 2, 3, …, 11, 12.

x + y 2 3 4 5 6

f(x + y) 1/36 2/36 3/36 4/36 5/36

x + y 7 8 9 10 11 12

f(x + y) 6/36 5/36 4/36 3/36 2/36 1/36

We can find the expected value as follows:

It then follows that the variance is:

Var X Y( ) ( ) ( ) .+ = − 



 + − 











= =2 7
1

36
12 7

1

36

210

36
5 83332 2L

E X Y( ) ( ) ( ) ( ) ( )+ = 



 + 



 + + 



 + 



 = =2

1

36
3

2

36
11

2

36
12

1

36

252

36
7L

σ σX Y
2 2 2 91666= = .
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However, using Theorems 3-2 and 3-7 makes this an easy task.

By using Theorem 3-2, 

E(X + Y) = E(X) + E(Y) = 3.5 + 3.5 = 7.

By using Theorem 3-7,

Since X = Y, we could have also found the expected value using
Theorems 3-1:

However, we could not have used Theorem 3-5 to find the variance
because we are basically using the same distribution, X, twice, and X is
not independent from itself. Notice that we get the wrong variance when
we apply the theorem:

Var X X Var X Var X Var X( ) ( ) ( ) ( ) .+ = = ( ) = =2 2 4 11 6662

E X Y E X X E X E X( ) ( ) ( ) ( ) ( . )+ = + = = [ ] = =2 2 2 3 5 7

Var X Y Var X Var Y( ) ( ) ( ) . . .+ = + = + =2 91666 2 91666 5 8333
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IN THIS CHAPTER: 

✔ Continuous Random Variables

✔ Continuous Probability Distribution

✔ Distribution Functions for Continuous 

Random Variables

✔ Expected Values

✔ Variance

✔ Properties of Expected Values 

and Variances

✔ Graphical Interpretations

Continuous Random Variables

A nondiscrete random variable X is said to be absolutely continuous, or
simply continuous, if its distribution function may be represented as

Chapter 4

CONTINUOUS
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(1)

where the function f(x) has the properties

1.

2.

Continuous Probability Distribution

It follows from the above that if X is a continuous random variable, then
the probability that X takes on any one particular value is zero, where-
as the interval probability that X lies between two different values, say
a and b, is given by

(2)

Example 4.1. If an individual were selected at random from a large
group of adult males, the probability that his height X is precisely 68
inches (i.e., 68.000… inches) would be zero. However, there is a prob-
ability greater than zero that X is between 67.000… inches and
68.000… inches.

A function f(x) that satisfies the above
requirements is called a probability function
or probability distribution for a continuous
random variable, but it is more often called
a probability density function or simply den-
sity function. Any function f(x) satisfying the two properties above will
automatically be a density function, and required probabilities can be
obtained from (2).

P a X b f x dx
b

a

( ) ( )< < = ∫

f x dx( ) =
−∞

∞

∫ 1

f x( ) ≥ 0

F x P X x f u du
x

( ) ( ) ( )= ≤ =
−∞
∫
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Example 4.2. Find the constant c such that the function

is a density function, and then find P(1 < X < 2).

Notice that if c ≥ 0, then Property 1 is satisfied. So f(x) must satisfy
Property 2 in order for it to be a density function. Now

and since this must equal 1, we have , and our density function
is

Next,

Distribution Functions for Continuous Random

Variables

Recall the cumulative distribution function, or distribution function, for
a random variable is defined by

P X x dx
x

( )1 2
1

9 27

8

27

1

27

7

27
2

1

2 3

1

2

< < = = = − =∫

f x
x x

otherwise

( ) =
< <








1

9
0 3

0

2

c = 1

9

f x dx cx dx
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c( )
−∞

∞

∫ ∫= = =2

0

3 3

0

3

3
9

f x
cx x

otherwise
( ) =
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2 0 3
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F(x) = P(X ≤ x) (3)

where x is any real number, i.e., −∞ ≤ x ≤ ∞. So,

(4)

Example 4.3. Find the distribution function for example 4.2.

where x ≤ 3.

There is a nice relationship between the distribution function and
the density function. To see this relationship, consider the probability
that a random variable X takes on a value, x, and a value fairly close to
x, say x + ∆x.

The probability that X is between x and x + Dx is given by

(5)

so that if ∆x is small, we have approximately

P(x ≤ X ≤ x + Dx) + f(x)Dx (6)

We also see from (1) on differentiating both sides that

(7)

at all points where f(x) is continuous, i.e., the derivative of the distribu-
tion function is the density function.

dF x

dx
f x

( )
( )=

P x X x x f u du
x

x x

( ) ( )≤ ≤ + =
+

∫∆
∆

F x f x dx x dx
x

x x

( ) ( )= = =
−∞
∫ ∫

1

9 27
2

0

3

F x f x dx
x

( ) ( )=
−∞
∫
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Expected Values

If X is a continuous random variable having probability density function
f(x), then it can be shown that

(8)

Example 4.4. The density function of a random X is given by

The expected value of X is then

Variance

If X is a continuous random variable having probability density function
f(x), then the variance is given by

(9)

provided that the integral converges.

Example 4.5. Find the variance and standard deviation of the ran-
dom variable from Example 4.4, using the fact that the mean was found

σ µ µX E X x f x dx2 2 2= −( )[ ] = −
−∞

∞

∫ ( ) ( )

E X x f x dx x x dx
x

dx
x

( ) ( )= = 



 = = =

−∞

∞

∫ ∫ ∫
1

2 2 6

4

3
0

2 2

0

2 3

0

2

f x
x x

otherwise

( ) =
< <








1

2
0 2

0

E g x g x f x dx( ) ( ) ( )[ ] =
−∞

∞

∫
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to be .

and so the standard deviation is .

Recall that the variance (or standard deviation) is a measure of the
dispersion, or scatter, of the values of the random variable about the
mean µ. If the values tend to be concentrated near the mean, the vari-
ance is small; while if the values tend to be distributed far from the
mean, the variance is large. The situation is indicated graphically in
Figure 4-1 for the case of two continuous distributions having the same
mean µ.

Figure 4-1

Properties of Expected Values and Variances

In Chapter Three, we discussed several theorems that applied to expect-
ed values and variances of random variables. Since these theorems
apply to any random variable, we can apply them to continuous random
variables as well as their discrete counterparts. 

σ = =2
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3

σ 2
2 2 24
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µ = =E X( )
4
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CHAPTER 4: Continuous Random Variables 39



Example 4.6. Given the probability density function in Example
4.4, find E(3X) and Var(3X).

Using our the direct computational method,

Using Theorems 3-1 and 3-2, respectively, we could have found these
much easier as follows:

or

Using Theorem 3-5, the variance is also quite simple to find:

Var X Var X( ) ( )3 3 9
2

9
22= = 



 =

E X E X X X E X E X E X( ) ( ) ( ) ( ) ( )3
4

3

4

3

4

3
4= + + = + + = + + =

E X E X( ) ( )3 3 3
4

3
4= = 



 =

E X x f x dx x x dx x dx
x

( ) ( )3 3 3
1

2

3

2 2
4
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2
2

0

2 3

0

2

= = 



 = = =

−∞

∞

∫ ∫ ∫
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Note!

These theorems aren’t just for show! They can make your

work much easier, so learn them and take advantage of them.



Graphical Interpretations

If f(x) is the density function for a random variable X, then we can rep-
resent y = f(x) by a curve, as seen below in Figure 4-2. Since f(x) ≥ 0,
the curve cannot fall below the x-axis. The entire area bounded by the
curve and the x-axis must be 1 because of property 2 listed above.
Geometrically, the probability that X is between a and b, i.e., 
P(a < X < b), is then represented by the area shown shaded, in Figure 
4-2.

Figure 4-2

The distribution function F(x) = P(X ≤ x) is a monotonically
increasing function that increases from 0 to 1 and is represented by a
curve as in the following figure:

Figure 4-3
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Binomial Distribution 

Suppose that we have an experiment such as
tossing a coin or die repeatedly or choosing a
marble from an urn repeatedly. Each toss or
selection is called a trial. In any single trial
there will be a probability associated with a
particular event such as head on the coin, four
on the die, or selection of a specific color mar-
ble. In some cases this probability will not
change from one trial to the next (as in tossing
a coin or die). Such trials are then said to be independent and are often
called Bernoulli trials after James Bernoulli who investigated them at
the end of the seventeenth century.

Let p be the probability that an event will happen in any single
Bernoulli trial (called the probability of success). Then q = 1 − p is the
probability that the event will fail to happen in any single trial (called
the probability of failure). The probability that the event will happen
exactly x times in n trials (i.e., x successes and n – x failures will occur)
is given by the probability function

(1)

where the random variable X denotes the number of successes in n tri-
als and x = 0, 1, …, n.

Example 5.1. The probability of getting exactly 2 heads in 6 tosses
of a fair coin is

The discrete probability function f(x) is often called the binomial distri-
bution since x = 0, 1, 2, … , n, it corresponds to successive terms in the
binomial expansion

P X( )
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= = 
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(2)

The special case of a binomial distribution with n = 1 is also called the
Bernoulli distribution.

Properties of Binomial Distributions

As with other distributions, we would like to know the descriptive sta-
tistics for the binomial distribution. They are as follows:

Mean µ = np
Variance σ2 = np (1 − p)

Standard Deviation

Example 5.2. Toss a fair coin 100 times, and count the number of
heads that appear. Find the mean, variance, and standard deviation of
this experiment.

In 100 tosses of a fair coin, the expected or mean number of heads is
µ = (100)(0.5) = 50. 

The variance is found to be σ2 = (100)(0.5)(0.5) = 25.

This means the standard deviation is .σ = = =( )( . )( . )100 0 5 0 5 25 5

σ = −np p( )1

= 





−

=
∑

n

x
p qx n x

x

n

0

= + 





+ 





+ +− −q
n

q p
n

q p pn n n n

1 2
1 2 2 L( )q p n+

44 PROBABILITY AND STATISTICS



The Normal Distribution

One of the most important examples of a continuous probability distri-
bution is the normal distribution, sometimes called the Gaussian distri-
bution. The density function for this distribution is given by

(3)

where µ and σ are the mean and standard deviation, respectively. The
corresponding distribution function is given by

(4)

If X has the distribution function listed above, then we say that the
random variable X is normally distributed with mean µ and variance σ2. 

If we let Z be the random variable corresponding to the following

(5)

then Z is called the standard variable corresponding to X. The mean or
expected value of Z is 0 and the standard deviation is 1. In such cases
the density function for Z can be obtained from the definition of a nor-
mal distribution by allowing µ = 0 and σ2 = 1, yielding

(6)

This is often referred to as the standard normal density function.
The corresponding distribution function is given by 
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(7)

We sometimes call the value z of the standardized variable Z the
standard score.

A graph of the standard normal density function, sometimes called
the standard normal curve, is shown in Figure 5-1. In this graph we
have indicated the areas within 1, 2, and 3 standard deviations of the
mean (i.e., between z = −1 and +1, z = −2 and +2, z = −3 and +3) as
equal, respectively, to 68.27%, 95.45%, and 99.73% of the total area,
which is one. This means that 

P (−1 ≤ Z ≤ 1) = 0.6827
P (−2 ≤ Z ≤ 2) = 0.9545
P (−3 ≤ Z ≤ 3) = 0.9973

F z P Z z e du e duu
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Figure 5-1

A table giving the areas under the curve bounded by the ordinates
at z = 0 and any positive value of z is given in Appendix B. From this
table the areas between any two ordinates can be found by using the
symmetry of the curve about z = 0.

Examples of the Normal Distribution

Since this distribution is so important, we will now run through a few
examples of how to use the distribution.

Example 5.3. Find the area under the standard normal curve
between z = 0 and z = 1.2.

Using the table in Appendix B, proceed down the column marked
z until entry 1.2 is reached. Then proceed right to column marked 0. The
result, 0.3849, is the required area and represents the probability that Z
is between 0 and 1.2. Therefore, P(0 ≤ Z ≤ 1.2) = 0.3849.
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Example 5.4. Find the area under the standard normal curve
between z = −0.46 and z = 2.21.

Figure 5-2

Consider the following picture of the density curve.

Figure 5-3

The required area can be broken down into two parts. First, the area
between z = −0.46 and z = 0, and secondly, the area between z = 0 and
z = 0 and z = 2.21.

Since the normal curve is symmetric, the area between z = −0.46
and z = 0 is the same as the area between z = 0 and z = 0.46. Using
Appendix B, we can see that this area is 0.1772. In other words, 

P(−0.46 ≤ Z ≤ 0 = P(0 ≤ Z ≤ 0.46) = 0.1772 

Using Appendix B to find the area between z = 0 and z = 2.21 is
found to be 0.4864. This means

P(0 ≤ Z ≤ 2.21) = 0.4864

This allows us to determine the required area as follows:
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Total Area = (area between z = −0.46 and z = 0) +
(area between z = 0 and z = 2.21)

= 0.1722 + 0.4864
= 0.6586

Therefore P(−0.46 ≤ Z ≤ 2.21) = 0.6636.

Example 5.5. The mean weight of 500 male students at a certain
college is 151 lb and the standard deviation is 15 lb. Assuming the
weights are normally distributed, find how many students weigh (a)
between 120 and 155 lb, (b) more than 185 lb.

(a) If weights are recorded to the nearest pound, then weights recorded
as being between 120 and 155 lb can actually have any value from 119.5
to 155.5 lb.

We need to find the standard scores for 119.5 and 155.5.

119.5 lb in standard units = (119.5 – 151) / 15
= −2.10

155.5 lb in standard units = (155.5 – 151) / 15
= 0.30

Figure 5-4
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Required proportion of students
= (area between z = −2.10 and z = 0.30)
= (area between z = −2.10 and z = 0) 

+ (area between z = 0 and z = 0.30)
= 0.4821 + 0.1179
= 0.6000

This means that of the 500 male students polled, 60% of them weigh
between 120 and 155 lb. Then the number of students in this range is
(500)(0.6000) = 300.

(b) Notice that students weighing more than 185 lb must weigh at least
185.5 lb.

185.5 lb in standard units = (185.5 – 151) / 15
= 2.30

Figure 5-5

Required proportion of students
= (area to the right of z = 2.30)
= (area to the right of z = 0)

− (area between z = 0 and z = 2.30)
= 0.5 – 0.4893
= 0.0107

Then the number weighing more than 185 lb is (500)(0.0107) = 5.
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If W denotes the weight of a student chosen at random, we can sum-
marize the above results in terms of probability by writing

P(119.5 ≤ W ≤ 155.5 = 0.6000 P(W ≥ 185.5) = 0.0107

Poisson Distributions

Let X be a discrete random variable that can take on the values 0, 1, 2,…
such that the probability function of X is given by

(8)

where λ is a given positive constant. This distribution is called the
Poisson distribution (after S. D. Poisson, who discovered it in the early
part of the nineteenth century), and a random variable having this dis-
tribution is said to be Poisson distributed. 

The values of the Poisson distribution can be obtained by using
Appendix F, which gives values of e−λ for various values of λ.

Example 5.6. If the probability that an individual will suffer a bad
reaction from injection of a given serum is 0.001, determine the proba-
bility that out of 2000 individuals, (a) exactly 3, (b) more than 2, indi-
viduals will suffer a bad reaction.

Let X denote the number of individuals suffering a bad reaction. X
is Bernoulli distributed, but since bad reactions are assumed to be rare
events, we can suppose that X is Poisson distributed, i.e.,

where λ = np = (2000)(0.001) = 2P X x
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(a) 

(b) 

P(X > 2) =

=

= 1 − 5e−2

= 0.323

An exact evaluation of the probabilities using the binomial distrib-
ution would require much more labor.

Relationships between Binomial 

and Normal Distributions

If n is large and if neither p nor q is too close to zero, the binomial dis-
tribution can be closely approximated by a normal distribution with
standardized random variable given by

(9)

Here X is the random variable giving the number of successes in n
Bernoulli trials and p is the probability of success. The approximation
becomes better with increasing n and is exact in the limiting case. In
practice, the approximation is very good if both np and nq are greater
than 5. The fact that the binomial distribution approaches the normal
distribution can be described by writing
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(10)

In words, we say that the standardized random variable 

is asymptotically normal.

Example 5.7. Find the probability of getting between 3 and 6 heads
inclusive in 10 tosses of a fair coin by using (a) the binomial distribu-
tion and (b) the normal approximation to the binomial distribution.

(a) Let X have the random variable giving the number of heads that
will turn up in 10 tosses. Then

Then the required probability is

(b) Treating the data as continuous, it follows that 3 to 6 heads can be
considered 2.5 to 6.5 heads. Also, the mean and the variance for the

binomial distribution is given by and
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2.5 in standard units =

6.5 in standard units =

Figure 5-6

Required probability = (area between z = −1.58 and z = 0.95)

= (area between z = −1.58 and z = 0)

+ (area between z = 0 and z = 0.95)

= 0.4429 + 0.3289

= 0.7718

which compares very well with the true value 0.7734 obtained in part
(a). The accuracy is even better for larger values of n.

Relationships between Binomial 

and Poisson Distributions

In the binomial distribution, if n is large while the probability p of
occurrence of an event is close to zero, so that q = 1 – p is close to one,
the event is called a rare event. In practice, we shall consider an event
as rare if the number of trials is at least 50 (n ≥ 50) while np is less than
5. For such cases, the binomial distribution is very closely approximat-
ed by the Poisson distribution with λ = np. This is to be expected on
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comparing the equations for the means and
variances for both distributions. By substi-
tuting λ = np, q ≈ 1 and p ≈ 0 into the equa-
tions for the mean and variance of a bino-
mial distribution, we get the results for the
mean and variance for the Poisson distribu-
tion.

Relationships between Poisson 

and Normal Distributions

Since there is a relationship between the binomial and normal distribu-
tions and between the binomial and Poisson distributions, we would
expect that there should be a relation between the Poisson and normal
distributions. This is in fact the case. We can show that if X is the fol-
lowing Poisson random variable 

(11)

and 

(12)

is the corresponding standardized random variable, then

(13)

i.e., the Poisson distribution approaches the normal distribution as 

λ → ∞ or is asymptotically normal.( ) /X − µ λ
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Central Limit Theorem

The similarities between the binomial, Poisson, and normal distribu-
tions naturally lead us to ask whether there are any other distributions
besides the binomial and Poisson that have the normal distribution as
the limiting case. The following remarkable theorem reveals that actu-
ally a large class of distributions have this property.

Theorem 5-1: (Central Limit Theorem) Let X1, X2,…, Xn be inde-

pendent random variables that are identically distrib-
uted (i.e., all have the same probability function in the
discrete case or density function in the continuous
case) and have finite mean µ and variance σ2. Then if 

Sn = X1 + X2 + … + Xn (n = 1, 2, ...),

(14)

that is, the random variable , which
is the standardized variable corresponding to Sn, is

asymptotically normal.

The theorem is also true under more general conditions; for exam-
ple, it holds when X1, X2, …, Xn are independent random variables with

the same mean and the same variance but not necessarily identically
distributed.

Law of Large Numbers

Theorem 5-2: (Law of Large Numbers) Let x1, x2, …, xn be mutu-

ally independent random variables (discrete or con-
tinuous), each having finite mean µ and variance σ2.
Then if Sn = X1 + X2 + … + Xn (n = 1, 2, ...),
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(15)

Since Sn/n is the arithmetic mean of X1 + X2 + … + Xn, this theo-
rem states that the probability of the arithmetic mean Sn/n differing

from its expected value µ by more than ε approaches zero as n → ∞. A
stronger result, which we might expect to be true, is that ,

but that is actually false. However, we can prove that 

with probability one. This result is often called the strong law of large
numbers, and by contrast, that of Theorem 5-2 is called the weak law of
large numbers
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Population and Sample

Often in practice we are interested in drawing valid conclusions about a
large group of individuals or objects. Instead of examining the entire
group, called the population, which may be difficult or impossible to do,
we may examine only a small part of this population, which is called a
sample. We do this with the aim of inferring certain facts about the pop-
ulation from results found in a sample, a process known as statistical
inference. The process of obtaining samples is called sampling.

Example 6.1. We may wish to draw con-
clusions about the percentage of defective bolts
produced in a factory during a given 6-day
week by examining 20 bolts each day produced
at various times during the day. In this case all
bolts produced during the week comprise the
population, while the 120 selected bolts consti-
tute a sample.

Several things should be noted. First, the word population does not
necessarily have the same meaning as in everyday language, such as
“the population of Shreveport is 180,000.” Second, the word population
is often used to denote the observations or measurements rather than
individuals or objects. Third, the population can be finite or infinite,
with the number being called the population size, usually denoted by N.
Similarly, the number in the sample is called the sample size, denoted
by n, and is generally finite. 

Sampling

If we draw an object from an urn, we have the choice of replacing or not
replacing the object into the urn before we draw again. In the first case
a particular object can come up again and again, whereas in the second
it can come up only once. Sampling where each member of a popula-
tion may be chosen more than once is called sampling with replacement,
while sampling where each member cannot be chosen more than once
is called sampling without replacement.
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Random Samples, Random Numbers

Clearly, the reliability of conclusions drawn concerning a population
depends on whether the sample is properly chosen so as to represent the
population sufficiently well, and one of the important problems of sta-
tistical inference is just how to choose a sample.

One way to do this for finite populations is to make sure that each
member of the population has the same chance of being in the sample,
which is often called a random sample. Random sampling can be
accomplished for relatively small populations by drawing lots, or equiv-
alently, by using a table of random numbers (Appendix G) specially
constructed for such purposes.

Because inference from sample to population cannot be certain, we
must use the language of probability in any statement of conclusions.

Population Parameters

A population is considered to be known when we know the probability
distribution f(x) (probability function or density function) of the associ-
ated random variable X. For instance, in Example 6.1, if X is a random
variable whose values are the number of defective bolts found during a
given 6-day week, then X has probability distribution f(x).
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If, for example, X is normally distributed, we say that the popula-
tion is normally distributed or that we have a normal population.
Similarly, if X is binomially distributed, we say that the population is
binomially distributed or that we have a binomial population.

There will be certain quantities that appear in f(x), such as µ and σ
in the case of the normal distribution or p in the case of the binomial dis-
tribution. Other quantities such as the median, mode, and skewness can
then be determined in terms of these. All such quantities are often called
population parameters. 

An important problem that arises when the probability distribution
f(x) of the population is not known precisely, although we may have
some idea of, or at least be able to make some hypothesis concerning,
is the general behavior of f(x). For example, we may have some reason
to suppose that a particular population is normally distributed. In that
case we may not know one or both of the values µ and σ and so we
might wish to draw statistical inferences about them.

Sample Statistics

We can take random samples from the population and then use these
samples to obtain values that serve to estimate and test hypothesis about
the population parameters.

By way of illustration, let us consider an example where we wish
to draw conclusions about the heights of 12,000 adult students by exam-
ining only 100 students selected from the population. In this case, X can
be a random variable whose values are the various heights. To obtain a
sample of size 100, we must first choose one individual at random from
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the population. This individual can have any
one value, say x1, of the various possible

heights, and we can call x1 the value of a

random variable X1, where the subscript 1 is

used since it corresponds to the first individ-
ual chosen. Similarly, we choose the second individual for the sample,
who can have any one of the values x2 of the possible heights, and x2

can be taken as the value of a random variable X2. We can continue this

process up to X100 since the sample is size 100. For simplicity let us

assume that the sampling is with replacement so that the same individ-
ual could conceivably be chosen more than once. In this case, since the
sample size is much smaller than the population size, sampling without
replacement would give practically the same results as sampling with
replacement.

In the general case a sample of size n would be described by the
values x1, x2, …, xn of the random variables X1, X2, …, Xn . In this case

of sampling with replacement, X1, X2, …, Xn would be independent,

identically distributed random variables having probability function
f(x). Their joint distribution would then be

P(X1 = x1, X2 = x2,..., Xn = xn) = f(x1) f(x2) ... f(xn)

Any quantity obtained from a sample for the purpose of estimating a
population parameter is called a sample statistic. Mathematically, a sam-
ple statistic for a sample of size n can be defined as a function of the ran-
dom variables X1, X2, …, Xn, i.e. g(X1,…,Xn). The function g(X1,…,Xn)

is another random variable, whose values can be represented by
g(x1,…,xn). 
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In general, corresponding to each population parameter there will
be a statistic computed from the sample. Usually the method for obtain-
ing this statistic from the sample is similar to that for obtaining the
parameter from a finite population, since a sample consists of a finite set
of values. As we shall see, however, this may not always produce the
“best estimate,” and one of the important problems of sampling theory
is to decide how to form the proper sample statistic that will be estimate
a given population parameter. Such problems are considered later.

Where possible we shall use Greek letters, such as µ or σ for val-
ues of population parameters, and Roman letters, m, s, etc., for values
corresponding to sample statistics.

Sampling Distributions

As we have seen, a sample statistic that is computed from X1,..., Xn is a

function of these random variables and is therefore itself a random vari-
able. The probability distribution of a sample statistic is often called the
sampling distribution of the statistic.

Alternatively, we can consider all possible sample of size n that can
be drawn from the population, and for each sample we compute the sta-
tistic. In this manner we obtain the distribution of the statistic, which is
its sampling distribution.

For a sampling distribution, we can of course compute a mean,
variance, standard deviation, etc. The standard deviation is sometimes
also called the standard error.
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The Sample Mean

Let X1, X2,..., Xn denote the independent, identically distributed, random

variables for a random sample of size n as described above. Then the
mean of the sample or sample mean is a random variable defined by

(1)

If x1, x2,...,xn denote the values obtained in a particular sample of size n,

then the mean for that sample is denoted by

(2)

Sampling Distribution of Means

Let f(x) be the probability distribution of some given population from
which we draw a sample of size n. Then it is natural to look for the prob-
ability distribution of the sample statistics X

–
, which is called the sam-

pling distribution for the sample mean, or the sampling distribution of
mean. The following theorems are important in this connection.

Theorem 6-1: The mean of the sampling distribution of means,
denoted by µX

–, is given by

E(X
–

) =  µX
– = µ (3)

where µ is the mean of the population.

x
x x x

n
n= + +1 2 L

X
X X X

n
n= + +1 2 L
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Theorem 6-1 states that the expected value of the sample mean is
the population mean.

Theorem 6-2: If a population is infinite and the sampling is random
or if the population is finite and sampling is with
replacement, then the variance of the sampling distri-

bution of means, denoted by , is given by

(4)
where σ2 is the variance of the population.

Theorem 6-3: If the population is of size N, if sampling is without
replacement, and if the sample size is n ≤ N, then the
previous equation is replaced by

(5)

while µX
– is from Theorem 6-1.

Note that Theorem 6-3 is basically the same as 6-2 as N → ∞.

Theorem 6-4: If the population from which samples are taken is
normally distributed with mean µ and variance σ2,
then the sample mean is normally distributed with
mean µ and variance σ2 /n.

Theorem 6-5: Suppose that the population from which samples are
taken has a probability distribution with mean µ and
variance σ2, that is not necessarily a normal distribu-
tion. Then the standardized variable associated with
X
–

, given by

(6)Z
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is asymptotically normal, i.e.,

(7)

Theorem 6-5 is a consequence of the central limit theorem. It is
assumed here that the population is infinite or that sampling is with

replacement. Otherwise, the above is correct if we replace in

Theorem 6-5 by as given in Theorem 6-3.

Example 6.2. Five hundred ball bearings have a mean weight of
5.02 oz and a standard deviation of 0.30 oz. Find the probability that a
random sample of 100 ball bearings chosen from this group will have a
combined weight of more than 510 oz.

For the sampling distribution of means, µX
– = µ = 5.02 oz, and

.

The combined weight will exceed 510 oz if the mean weight of the 100
bearings exceeds 5.10 oz.

5.10 in standard units =

Figure 6-1
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Required Probability = (area to the right of z = 2.96)

= (area to the right of z = 0) −
(area between z = 0 and z = 2.96)

= 0.5 – 0.4985 = 0.0015

Therefore, there are only 3 chances in 2000 of picking a sample of 100
ball bearings with a combined weight exceeding 510 oz.

Sampling Distribution of Proportions

Suppose that a population is infinite and binomially distributed, with p
and q = 1 – p being the respective probabilities that any given member
exhibits or does not exhibit of a certain property. For example, the pop-
ulation may be all possible tosses of a fair coin, in which the probabili-

ty of the event heads is p = ¹⁄₂.
Consider all possible samples of size n drawn from this population,

and for each sample determine the statistic that is the proportion P of
successes. In the case of the coin, P would be the proportion of heads
turning up in n tosses. Then we obtain a sampling distribution whose
mean µP and standard deviation σP are given by

(8)

which can be obtained using Theorem 5-1 and Theorem 5-2, respec-

tively, by placing µ = p, σ = .

For large values of n (n ≥ 30), the sampling distribution is very
nearly a normal distribution, as is seen from Theorem 6-5.

For finite populations in which sampling is without replacement,
the equation for σP given above, is replaced by σX

– as given by Theorem

6-3 with σ = .pq

pq

µ σP Pp
pq

n

p p

n
= = = −( )1
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Note that the equations for µP and σP are obtained most easily on divid-

ing by n the mean and standard deviation (np and ) of the bino-
mial distribution.

Sampling Distribution 

of Differences and Sums

Suppose that we are given two populations. For
each sample of size n1 drawn from the first popu-
lation, let us compute a statistic S1. This yields a
sampling distribution for S1 whose mean and stan-
dard deviation we denote by and , respec-

tively. Similarly for each sample of size n2 drawn
from the second population, let us compute a statistic S2 whose mean
and standard deviation are and , respectively.

Taking all possible combinations of these samples from the two
populations, we can obtain a distribution of the differences, S1 – S2,
which is called the sampling distribution of differences of the statistics.
The mean and standard deviation of this sampling distribution, denoted 
respectively by and , are given by

(9)

provided that the samples chosen do not in any way depend on each
other, i.e., the samples are independent (in other words, the random
variables S1 and S2 are independent).

If, for example, S1 and S2 are the sample means from two popula-
tions, denoted by X

–
1, X

–
2, respectively, then the sampling distribution of

the differences of means is given for infinite populations with mean and
standard deviation µ1, σ1 and µ2, σ2, respectively, by

µ µ µ σ σ σS S S S S S S S1 2 1 2 1 2 1 2

2 2
− −= − = +

σ S S1 2−µS S1 2−

σ S1
µS1

σ S1
µS1

npq
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(10)

and

(11)

using Theorems 6-1 and 6-2. This result also holds for finite populations
if sampling is done with replacement. The standardized variable 

(12)

in that case is very nearly normally distributed if n1 and n2 are large 
(n1, n2 ≥ 30). Similar results can be obtained for infinite populations in
which sampling is without replacement by using Theorems 6-1 and 6-3.

Corresponding results can be obtained for sampling distributions of
differences of proportions from two binomially distributed populations
with parameters p1, q1 and p2, q2, respectively. In this case, S1 and S2
correspond to the proportion of successes P1 and P2, whose mean and
standard deviation of their difference is given by

(13)

and

(14)σ σ σP P P P
p q

n

p q

n1 2 1 2

2 2 1 1

1

2 2

2
− = + = +

µ µ µP P P P p p
1 2 1 2 1 2− = − = −

Z
X X

n n

=
−( ) − −( )

+

1 2 1 2

1
2

1

2
2

2

µ µ

σ σ

σ σ σ σ σ
X X X X n n1 2 1 12

2 2 1
2

1

2
2

2
− = + = +

µ µ µ µ µ
X X X X1 2 1 2 1 2− = − = −
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Instead of taking differences of statistics, we sometimes are inter-
ested in the sum of statistics. In that case, the sampling distribution of
the sum of statistics S1 and S2 has mean and standard deviation given by

(15)

assuming the samples are independent. Results similar to and

can then be obtained.

Example 6.3. It has been found that 2% of the tools produced by a
certain machine are defective. What is the probability that in a shipment
of 400 such tools, 3% or more will prove defective?

µP = p = 0.02  and  

Using the correction for discrete variables, 1/(2n) = 1/800 =
0.00125, we have (0.03 – 0.00125) in standard units =

Required probability = (area under normal curve to right of
z = 1.25)

= 0.1056

If we had not used the correction, we would have obtained 0.0764.

0 03 0 00125 0 02

0 007
1 25

. . .

.
.

− − =

σ P
pq

n
= = = =0 02 0 98

400

0 14

20
0 007

. ( . ) .
.

σ
X X1 2−

µ
X X1 2−

µ µ µ σ σ σS S S S S S S S1 2 1 2 1 2 1 2

2 2
+ += + = +
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The Sample Variance

If X1, X2, …, Xn denote the random variables for a sample of size n, then

the random variable giving the variance of the sample or the sample
variance is defined by

(16)

Now in Theorem 6-1 we found that E(X
–

) = µ, and it would be nice
if we could also have E(S 2) = σ 2. Whenever the expected value of a sta-
tistic is equal to the corresponding population parameter, we call the sta-
tistic an unbiased estimator, and the value an unbiased estimate, of this
parameter. It turns out, however, that

(17)

which is very nearly σ2 only for large values of n (say, n ≥ 30). The
desired unbiased estimator is defined by

(18)

so that

E(S 2) = σ 2 (19)

Ŝ
n

n
S

X X X X X X

n
n2 2 1

2
2

2 2

1 1
=

−
=

−( ) + −( ) + + −( )
−

L

E S
n

nS
( )2 2

2

1= = −µ σ

S
X X X X X X

n
n2 1

2
2

2 2
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−( ) + −( ) + + −( )L
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Because of this, some statisticians choose to define the sample vari-
ance by Ŝ2 rather than S2 and they simply replace n by n – 1 in the
denominator of the definition of S2 because by doing this, many later
results are simplified.

Frequency Distributions

If a sample (or even a population) is large, it is difficult to observe the
various characteristics or to compute statistics such as mean or standard
deviation. For this reason it is useful to organize or group the raw data.
As an illustration, suppose that a sample consists of the heights of 100
male students at XYZ University. We arrange the data into classes or
categories and determine the number of individuals belonging to each
class, called the class frequency. The resulting arrangement, Table 6-1,
is called a frequency distribution or frequency table.

Table 6-1 Heights of 100 Male Students at XYZ University

The first class or category, for example, consists of heights from 60
to 62 inches, indicated by 60–62, which is called class interval. Since 5
students have heights belonging to this class, the corresponding class
frequency is 5. Since a height that is recorded as 60 inches is actually
between 59.5 and 60.5 inches while one recorded as 62 inches is actu-
ally between 61.5 and 62.5 inches, we could just as well have recorded
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the class interval as 59.5 – 62.5. The next
class interval would then be 62.5 – 65.5, etc.
In the class interval 59.5 – 62.5, the num-
bers 59.5 and 62.5 are often called class
boundaries. The width of the jth class inter-
val, denoted by cj, which is usually the same for all classes (in which

case it is denoted by c), is the difference between the upper and lower
class boundaries. In this case, c = 62.5 − 59.5 = 3.

The midpoint of the class interval, which can be taken as represen-
tative of the class, is called the class mark. In Table 6.1 the class mark
corresponding to the class interval 60–62 is 61.

A graph for the frequency distribution can be supplied by a his-
togram, as shown in the figure below, or by a polygon graph (often
called a frequency polygon) connecting the midpoints of the tops in the
histogram. It is of interest that the shape of the graph seems to indicate
that the sample is drawn from a population of heights that is normally
distributed.

Figure 6-2

Relative Frequency Distributions

If in Table 6.1 we recorded the relative frequency or percentage rather
than the number of students in each class, the result would be a relative

CHAPTER 6: Sampling Theory  73



or percentage frequency distribution. For example, the relative or per-
centage frequency corresponding to the class 63–65 is 18/100 or 18%.
The corresponding histogram is similar to that in Figure 6-1 except that
the vertical axis is relative frequency instead of frequency. The sum of
the rectangular areas is then 1, or 100%.

We can consider a relative frequency as a probability distribution in
which probabilities are replaced by relative frequencies. Since relative
frequencies can be thought of as empirical probabilities, relative fre-
quency distributions are known as empirical probability distributions.
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IN THIS CHAPTER: 

✔ Unbiased Estimates and 

Efficient Estimates

✔ Point Estimates and Interval Estimates

✔ Confidence Interval Estimates of 

Population Parameters

✔ Confidence Intervals for Means

✔ Confidence Intervals for Proportions

✔ Confidence Intervals for Differences

and Sums

Unbiased Estimates and Efficient Estimates

As we remarked in Chapter 6, a statistic is called an unbiased estimator
of a population parameter if the mean or expectation of the statistic is
equal to the parameter. The corresponding value of the statistic is then
called an unbiased estimate of the parameter.

Chapter 7

ESTIMATION
THEORY

75
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If the sampling distribution of two statistics
have the same mean, the statistic with the smaller
variance is called a more efficient estimator of the
mean. The corresponding value of the efficient sta-
tistic is then called an efficient estimate. Clearly
one would in practice prefer to have estimates that
are both efficient and unbiased, but this is not
always possible.

Point Estimates and Interval Estimates

An estimate of a population parameter given by a single number is
called a point estimate of the parameter. An estimate of a population
parameter given by two numbers between which the parameter may be
considered to lie is called an interval estimate of the parameter.

Example 7.1. If we say that a distance is 5.28 feet, we are giving a
point estimate. If, on the other hand, we say that the distance is 
5.28 ± 0.03 feet, i.e., the distance lies between 5.25 and 5.31 feet, we
are giving an interval estimate.

A statement of the error or precision of an estimate is often called
its reliability.

Confidence Interval Estimates 

of Population Parameters

Let µS and σS be the mean and standard deviation (standard error) of the
sampling distribution of a statistic S. Then, if the sampling distribution
of S is approximately normal (which as we have seen is true for many
statistics if the sample size n ≥ 30), we can expect to find S lying in the
interval µS − σS to µS + σS, µS − 2σS to µS + 2σS or µS − 3σS to µS + 3σS

about 68.27%, 95.45%, and 99.73% of the time, respectively.
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Equivalently we can expect to find, or we
can be confident of finding µS in the intervals S
− σS to S + σS, S − 2σS to S + 2σS, or S − 3σS to
S + 3σS about 68.27%, 95.45%, and 99.73% of
the time, respectively. Because of this, we call
these respective intervals the 68.27%, 95.45%,
and 99.73% confidence intervals for estimating
µS (i.e., for estimating the population parame-
ter, in this case of an unbiased S). The end numbers of these intervals 
(S ± σS, S ± 2σS, S ± 3σS) are then called the 68.37%, 95.45%, and
99.73% confidence limits.

Similarly, S ± 1.96σS and S ± 2.58σS are 95% and 99% (or 0.95 and
0.99) confidence limits for µS. The percentage confidence is often called
the confidence level. The numbers 1.96, 2.58, etc., in the confidence
limits are called critical values, and are denoted by zC. From confidence
levels we can find critical values.

In Table 7.1 we give values of zC corresponding to various confi-
dence levels used in practice. For confidence levels not presented in the
table, the values of zC can be found from the normal curve area table in
Appendix B.

Table 7-1

In cases where a statistic has a sampling distribution that is differ-
ent from the normal distribution, appropriate modifications to obtain
confidence intervals have to be made.
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Confidence Intervals for Means

We shall see how to create confidence intervals for the mean of a pop-
ulation using two different cases. The first case shall be when we have a
large sample size (n ≥ 30), and the second case shall be when we 
have a smaller sample (n < 30) and the underlying population is normal.

Large Samples (n ≥ 30)

If the statistic S is the sample mean X
–

, then the 95% and 99% confi-
dence limits for estimation of the population mean µ are given by X

– ±
1.96σX

– and X
– ± 2.58σX

–, respectively. More generally, the confidence
limits are given by X

– ± zcσX
– where zc, which depends on the particular

level of confidence desired, can be read from Table 7.1. Using the vales
of σX

– obtained in Chapter Six, we see that the confidence limits for the
population mean are given by

(1)

in case sampling from an infinite population or if sampling is done with
replacement from a finite population, and by

(2)

if sampling is done without replacement from a population of finite size N.
In general, the population standard deviation σ is unknown, so that

to obtain the above confidence limits, we use the estimator Ŝ or S.

X z
n

N n

NC± −
−

σ
1

X z
nC± σ
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Example 7.2. Find a 95% confidence interval estimating the mean
height of the 1546 male students at XYZ University by taking a sample
of size 100. (Assume the mean of the sample, x–, is 67.45 and that the
standard deviation of the sample, ŝ, is 2.93 inches.)

The 95% confidence limits are .

Using  x– = 67.45 inches and ŝ = 2.93 inches as an estimate of σ, the
confidence limits are 

inches

or

67.45 ± 0.57 inches

Then the 95% confidence interval for the population mean µ is
66.88 to 68.02 inches, which can be denoted by 66.88 < µ < 68.02.

We can therefore say that the probability that the population mean
height lies between 66.88 and 68.02 inches is about 95% or 0.95. In
symbols, we write P(66.88 < µ < 68.02) = 0.95. This is equivalent to
saying that we are 95% confident that the population mean (or true
mean) lies between 66.88 and 68.02 inches.

Small Samples (n < 30) and Population Normal

In this case we use the t distribution (see Chapter Ten) to obtain confi-
dence levels. For example, if –t0.975 and t0.975 are the values of T for

which 2.5% of the area lies in each tail of the t distribution, then a 95%
confidence interval for T is given by 

67 45 1 96
2 93

100
. .

.± 





X
n

±1 96.
σ
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(3)

from which we can see that µ can be estimated to lie in the interval

(4)

with 95% confidence. In general the confidence limits for population
means are given by

(5)

where the tc values can be read from Appendix C.

A comparison of (5) with (1) shows that for small samples we
replace zc by tc. For n > 30, zc and tc are practically equal. It should be
noted that an advantage of the small sampling theory (which can of
course be used for large samples as well, i.e., it is exact) in that Ŝ appears
in (5) so that the sample standard deviation can be used instead of the
population standard deviation (which is usually unknown) as in (1).

X t
S

nc±
ˆ

X t
S

n
X t

S

n
− < < +0 975 0 975. .

ˆ ˆ
µ

− < − <t
X n

S
t0 975 0 975. .

( )
ˆ
µ
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Confidence Intervals for Proportions

Suppose that the statistic S is the proportion of “successes” in a sample
of size n ≥ 30 drawn from a binomial population in which p is the pro-
portion of successes (i.e., the probability of success). Then the confi-
dence limits for p are given by P ± zcσP, where P denotes the propor-
tion of success in the sample of size n. Using the values of σP obtained
in Chapter Six, we see that the confidence limits for the population pro-
portion are given by

(6)

in case sampling from an infinite population or if sampling is with
replacement from a finite population. Similarly, the confidence limits
are

(7)

if sampling is without replacement from a population of finite size N.
Note that these results are obtained from (1) and (2) on replacing X

–
by

P and σ by .
To compute the above confidence limits, we use the sample esti-

mate P for p. 

Example 7.3. A sample poll of 100 voters chosen at random from
all voters in a given district indicate that 55% of them were in favor of
a particular candidate. Find the 99% confidence limits for the proportion
of all voters in favor of this candidate.

The 99% confidence limits for the population p are

pq

P z
pq

n

N n

Nc± −
−1

P z
pq

n
P z

p p

nc c± = ± −( )1
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P ± 1.58σP = 

= 

= 0.55 ± 0.13

Confidence Intervals for 

Differences and Sums

If S1 and S2 are two sample statistics with approximately normal sam-

pling distributions, confidence limits for the differences of the popula-
tion parameters corresponding to S1 and S2 are given by

(8)

while confidence limits for the sum of the population parameters are
given by

(9)

provided that the samples are independent.
For example, confidence limits for the difference of two population

means, in the case where the populations are infinite and have known
standard deviations σ1, σ2, are given by

(10)

where X
–

1, n1 and X
–

2, n2 are the respective means and sizes of the two

samples drawn from the populations.

X X z X X z
n nc X X c1 2 1 2

1
2

1

2
2

2
1 2

− ± = − ± +−σ σ σ

S S z S S zc S S c S S1 2 1 2
2 2

1 2 1 2
+ ± = + ± ++σ σ σ

S S z S S zc S S c S S1 2 1 2
2 2

1 2 1 2
− ± = − ± +−σ σ σ
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. .
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Similarly, confidence limits for the difference of two population
proportions, where the populations are infinite, are given by

(11)

where P1 and P2 are the two sample proportions and n1 and n2 are the

sizes of the two samples drawn from the populations.

Example 7.4. In a random sample of 400 adults and 600 teenagers
who watched a certain television program, 100 adults and 300 teenagers
indicated that they liked it. Construct the 99.73% confidence limits for
the difference in proportions of all adults and all teenagers who watched
the program and liked it.

Confidence limits for the difference in proportions of the two
groups are given by (11), where subscripts 1 and 2 refer to teenagers and
adults, respectively, and Q1 = 1 – P1, Q2 = 1 – P2. Here P1 = 300/600 =
0.50 and P2 = 100/400 = 0.25 are, respectively, the proportions of
teenagers and adults who liked the program. The 99.73% confidence
limits are given by

P P z
P P

n

P P

nc1 2
1 1

1

2 2

2

1 1− ± − + −( ) ( )

Remember 
The variance for the difference of
means is the same as the variance
for the sum of means! In other words,  

σ σX Y X Y+ −=2 2
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(12)

Therefore, we can be 99.73% confident that the true difference in
proportions lies between 0.16 and 0.34.

0 50 0 25 3
0 50 0 50

600

0 25 0 75

400
0 25 0 09. .

( . )( . ) ( . )( . )
. .− ± + = ±
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Theory and Hypothesis Testing

Statistical Decisions

Very often in practice we are called upon to make decisions about pop-
ulations on the basis of sample information. Such decisions are called

Chapter 8
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statistical decisions. For example, we may wish to decide on the basis
of sample data whether a new serum is really effective in curing a dis-
ease, whether one educational procedure is better than another, or
whether a given coin is loaded.

Statistical Hypothesis

In attempting to reach decisions, it is useful to make assumptions or
guesses about the populations involved. Such assumptions, which may
or may not be true, are called statistical hypotheses and in general are
statements about the probability distributions of the populations.

For example, if we want to decide whether
a given coin is loaded, we formulate the
hypothesis that the coin is fair, i.e., p = 0.5,
where p is the probability of heads. Similarly, if
we want to decide whether one procedure is
better than another, we formulate the hypothe-
sis that there is no difference between the two
procedures (i.e., any observed differences are
merely due to fluctuations in sampling from the
same population). Such hypotheses are often
called null hypotheses, denoted by H0. 

Any hypothesis that differs from a given null hypothesis is called
an alternative hypothesis. For example, if the null hypothesis is p = 0.5,
possible alternative hypotheses are p = 0.7, p ≠ 0.5, or p > 0.5. A hypoth-
esis alternative to the null hypothesis is denoted by H1.

Tests of Hypothesis and Significance

If on the supposition that a particular hypothesis is true we find that
results observed in a random sample differ markedly from those expect-
ed under the hypothesis on the basis of pure chance using sampling the-
ory, we would say that the observed differences are significant and we
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would be inclined to reject the hypothesis (or at least not accept it on the
basis of the evidence obtained). For example, if 20 tosses of a coin yield
16 heads, we would be inclined to reject the hypothesis that the coin is
fair, although it is conceivable that we might be wrong.

Type I and Type II Errors

If we reject a hypothesis when it happens to be true, we say that a Type
I error has been made. If, on the other hand, we accept a hypothesis
when it should be rejected, we say that a Type II error has been made.
In either case a wrong decision or error in judgment has occurred.

In order for any tests of hypotheses or decision rules to be good,
they must be designed so as to minimize errors of decision. This is not
a simple matter since, for a given sample size, an attempt to decrease
one type of error is accompanied in general by an increase in the other
type of error. In practice one type of error may be more serious than the
other, and so a compromise should be reached in favor of a limitation of
the more serious error. The only way to reduce both types of errors is to
increase the sample size, which may or may not be possible.

Level of Significance

In testing a given hypothesis, the maximum probability with which we
would be willing to risk a Type I error is called the level of significance
of the test. This probability is often specified before any samples are
drawn so that results obtained will not influence our decision.
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In practice a level of significance of 0.05 or 0.01 is customary,
although other values are used. If for example a 0.05 or 5% level of sig-
nificance is chosen in designing a test of a hypothesis, then there are
about 5 chances in 100 that we would reject the hypothesis when it
should be accepted; i.e., whenever the null hypothesis is true, we are
about 95% confident that we would make the right decision. In such
cases we say that the hypothesis has been rejected at a 0.05 level of sig-
nificance, which means that we could be wrong with probability 0.05.

Test Involving the Normal Distribution

To illustrate the ideas presented above, suppose that under a given
hypothesis, the sampling distribution of a statistic S is a normal distri-
bution with mean µS and standard deviation σS. The distribution of that
standard variable Z = (S − µS) /σS is the standard normal distribution
(mean 0, variance 1) shown in Figure 8-1, and extreme values of Z
would lead to the rejection of the hypothesis.

Figure 8-1
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As indicated in the figure, we can be 95% confident that, if the
hypothesis is true, the z score of an actual sample statistic S will be
between –1.96 and 1.96 (since the area under the normal curve between
these values is 0.95).

However, if on choosing a single sample at
random we find that the z score of its statistic lies
outside the range –1.96 to 1.96, we would con-
clude that such an event could happen with the
probability of only 0.05 (total shaded area in the
figure) if the given hypothesis was true. We would
then say that this z score differed significantly from
what would be expected under the hypothesis, and
we would be inclined to reject the hypothesis.

The total shaded area 0.05 is the level of significance of the test. It
represents the probability of our being wrong in rejecting the hypothe-
sis, i.e., the probability of making a Type I error. Therefore, we say that
the hypothesis is rejected at a 0.05 level of significance or that the z
score of the given sample statistic is significant at a 0.05 level of signif-
icance.

The set of z scores outside the range –1.96 to 1.96 constitutes what
is called the critical region or region of rejection of the hypothesis or the
region of significance. The set of z scores inside the range –1.96 to 1.96
could then be called the region of acceptance of the hypothesis or the
region of nonsignificance.

On the basis of the above remarks, we can formulate the following
decision rule:

(a) Reject the hypothesis at a 0.05 level of significance if the z
score of the statistic S lies outside the range –1.96 to 1.96 (i.e.,
if either z > 1.96 or z < -1.96). This is equivalent to saying that
the observed sample statistic is significant at the 0.05 level.

(b) Accept the hypothesis (or, if desired, make no decision at all)
otherwise.

It should be noted that other levels of significance could have been
used. For example, if a 0.01 level were used we would replace 1.96
everywhere above by 2.58 (see Table 8.1). Table 7.1 can also be used
since the sum of the level of significance and level of confidence is
100%.
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One-Tailed and Two-Tailed Tests

In the above test we displayed interest in extreme values of the statistic
S or its corresponding z score on both sides of the mean, i.e., in both
tails of the distribution. For this reason such tests are called two-tailed
tests or two-sided tests.

Often, however, we may be interested only in extreme values
to one side of the mean, i.e., in one tail of the distribution, as for exam-
ple, when we are testing the hypothesis that one process is better that
another (which is different from testing whether one process is better or
worse than the other). Such tests are called one-tailed tests or one-sided
tests. In such cases the critical region is a region to one side of the dis-
tribution, with area equal to the level of significance.

Table 8.1, which gives values of z for both one-tailed and two-
tailed tests at various levels of significance, will be useful for reference
purposes. Critical values of z for other levels of significance are found
by use of the table of normal curve areas.

Table 8-1

P Value

In most of the tests we will consider, the null hypothesis H0 will be an

assertion that a population parameter has a specific value, and the alter-
native hypothesis H1 will be one of the following two assertions:

(i) The parameter is greater than the stated value (right-tailed
test).
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(ii) The parameter is less that the stated value (left-tailed test).
(iii) The parameter is either greater than or less than the stated

value (two-tailed test).

In Cases (i) and (ii), H1 has a single direction with respect to the

parameter, and in case (iii), H1 is bi-directional. After the test has been

performed and the test statistic S computed, the P value of the test is the
probability that a value of S in the direction(s) of H1 and as extreme as

the one that actually did occur if H0 were true.

For example, suppose the standard deviation σ of a normal popula-
tion is known to be 3, and H0 asserts that the mean µ is equal to 12. A
random sample of size 36 drawn from the population yields a sample
mean x– = 12.95. The test statistic is chosen to be 

,

which, if H0 is true, is the standard normal variable. The test value of Z

is the following:

The P value for the test then depends on the alternative hypothesis H1

as follows:

(i) For H1: µ > 12 [case (i) above], the P value is the probability
that a random sample of size 36 would yield a sample mean of
12.95 or more if the true mean were 12, i.e., P(Z ≥ 19) = 0.029.
In other words, the chances are about 3 in 100 that x– ≥ 12.95
if µ = 12.

(ii) For H1: µ < 12 [case (ii) above], the P value is the probability
that a random sample of size 36 would yield a sample mean of

Z = − =12 95 12

0 5
1 9

.

.
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12.95 or less if the true mean were 12, i.e., P(Z ≤ 19) = 0.971.
In other words, the chances are about 97 in 100 that x– ≤ 12.95
if µ = 12.

(iii) For H1: µ ≠ 12 [case (iii) above], the P value is the probability
that a random sample mean 0.95 or more units away from 12,
i.e.,  x– ≥ 12.95 or x– ≤ 11.05, if the true mean were 12. Here the
P value is P(Z ≥ 19) + P(Z ≤ −19) = 0.057, which says the
chances are about 6 in 100 that |x– − 12| ≥ 0.095 if µ = 12.

Small P values provide evidence for rejecting the null hypothesis in
favor of the alternative hypothesis, and large P values provide evidence
for not rejecting the null hypothesis in favor of the alternative hypothe-
sis. In case (i) of the above example, the small P value 0.029 is a fairly
strong indicator that the population mean is greater than 12, whereas in
case (ii), the large P value 0.971 strongly suggests that H0 : µ = 12
should not be rejected in favor of H0 : µ < 12. In case (iii), the P value
0.057 provides evidence for rejecting H0 in favor of H0 : µ ≠ 12 but not
as much evidence as is provided for rejecting H0 in favor of H0 : µ > 12.

It should be kept in mind that the P value and the level of signifi-
cance do not provide criteria for rejecting or not rejecting the null
hypothesis by itself, but for rejecting or not rejecting the null hypothe-
sis in favor of the alternative hypothesis. As the previous example illus-
trates, identical test results and different significance levels can lead to
different conclusions regarding the same null hypothesis in relation to
different alternative hypothesis.

When the test statistic S is the standard normal random variable, the
table in Appendix B is sufficient to compute the P value, but when S is
one of the t, F, or chi-square random variables, all of which have dif-
ferent distributions depending on their degrees of freedom, either com-
puter software or more extensive tables than those in Appendices C, D,
and E will be needed to compute the P value.

Example 8.1. The mean lifetime of a sample of 100 fluorescent
light bulbs produced by a company is computed to be 1570 hours with
a standard deviation of 120 hours. If µ is the mean lifetime of all the
bulbs produced by the company, test the hypothesis µ = 1600 hours
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against the alternative hypothesis µ ≠ 1600 hours. Use a significance
level of 0.05 and find the P value of the test.

We must decide between the two hypotheses

H0 : µ = 1600 hours      H0 : µ ≠ 1600 hours

A two-tailed test should be used here since µ ≠ 1600 includes both val-
ues large and smaller than 1600.

For a two-tailed test at a level of significance of 0.05, we have the
following decision rule:

1. Reject H0 if the z score of the sample mean is outside the range

–1.96 to 1.96.
2. Accept H0 (or withhold any decision) otherwise.

The statistic under consideration is the sample mean X
–

. The sam-
pling distribution of X has a mean µX

– = µ and standard deviation

, where µ and σ are the mean and standard deviation of the

population of all bulbs produced by the company.
Under the hypothesis H0, we have µ = 1600 and 

, using the sample standard deviation as an estimate of σ.

Since Z = (X
– − 1600)/12 = (1570 − 1600)/12 = −2.50 lies outside the

range –1.96 to 1.96, we reject H0 at a 0.05 level of significance.
The P value of the two tailed test is P(Z ≤ −2.50) + P(Z ≥ 2.50) =

0.0124, which is the probability that a mean lifetime of less than 1570
hours or more than 1630 hours would occur by chance if H0 were true.

Special Tests

For large samples, many statistics S have nearly normal distributions
with mean µS and standard deviation σS. In such cases we can use the
above results to formulate decision rules or tests of hypotheses and sig-
nificance. The following special cases are just a few of the statistics of

=100 12

σ σ
X

n= =/ /120

σ σ
X

n= /
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practical interest. In each case the results hold for infinite populations or
for sampling with replacement. For sampling without replacement from
finite populations, the results must be modified. We shall only consider
the cases for large samples (n ≥ 30).

1. Means. Here S = X
–

, the sample mean; µ3 = µX
– = µ, the popu-

lation mean; , where σ is the population
standard deviation and n is the sample size. The standardized
variable is given by

(1)

When necessary the observed sample standard deviation, s (or
ŝ), is used to estimate σ.

To test the null hypothesis H0 that the population
mean is µ = a, we would use the statistic (1). Then, if the alter-
native hypothesis is µ = a, using a two-tailed test, we would
accept H0 (or at least not reject it) at the 0.05 level if for a par-
ticular sample of size n having mean x–

(2)

and would reject it otherwise. For other significance levels we
would change (2) appropriately. To test H0 against the alterna-
tive hypothesis that the population mean is greater than a, we
would use a one-tailed test and accept H0 (or at least not reject
it) at the 0.05 level if

(3)
x a

n

− <
σ /

.1 645

− ≤ − ≤1 96 1 96.
/

.
x a

nσ

Z
X

n
= − µ
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(see Table 8.1) and reject it otherwise. To test H0 against the
alternative hypothesis that the population mean is less than a,
we would accept H0 at the 0.05 level if

(4)

2. Proportions Here S = P, the proportion of “successes” in
a sample; µS = µP = P, where p is the population proportion of

successes and n is the sample size; , where 
q = 1 – p. The standardized variable is given by

(5)

In case P = X /n, where X is the actual number of suc-
cesses in a sample, (5) becomes 

(6)

Remarks similar to those made above about one- and
two-tailed tests for means can be made.

3. Differences of Means Let X
–

1 and X
–

2 be the sample means
obtained in large samples of sizes n1 and n2 drawn from respec-
tive populations having means µ1 and µ2 and standard devia-
tions σ1 and σ2. Consider the null hypothesis that there is no
difference between the population means, i.e., µ1 = µ2. From
our discussion on the sampling distributions of differences and
sums (Chapter 6), on placing µ1 = µ2 we see that the sampling
distribution of differences in means is approximately normal
with mean and standard deviation given by 

Z
X np

npq
= −

Z
P p

pq n
= −

/

σ σS P pq n= = /

x a

n

− >
σ /
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(7)

where we can, if necessary, use the observed sample standard
deviations s1 and s2 (or ŝ1 and ŝ2) as estimates of σ1 and σ2.

By using the standardized variable given by

(8)

in a manner similar to that described in Part 1 above, we can
test the null hypothesis against an alternative hypothesis (or
the significance of an observed difference) at an appropriate
level of significance.

4. Differences of Proportions Let P1 and P2 be the sam-
ple proportions obtained in large samples of sizes n1 and n2
drawn from respective populations having proportions p1 and
p2. Consider the null hypothesis that there is no difference
between the population proportions, i.e., p1 = p2, and thus that
the samples are really drawn from the same population.

From our discussions about the differences of propor-
tions in Chapter 6, on placing p1 = p2 = p, we see that the sam-
pling distribution of differences in proportions is approximate-
ly normal with mean and standard deviation given by

(9)µ σP P P P p p
n n1 2 1 2

0 1
1 1

21
− −= = − +







( )

Z
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where is used as an estimate of the popula-

tion proportion p.
By using the standardized variable

(10)

we can observe differences at an appropriate level of signifi-
cance and thereby test the null hypothesis.

Tests involving other statistics can similarly be
designed.

Relationship between Estimation 

Theory and Hypothesis Testing

From the above remarks one cannot help but notice that there is a rela-
tionship between estimation theory involving confidence intervals and
the theory of hypothesis testing. For example, we note that the result (2)
for accepting H0 at the 0.05 level is equivalent to the result (1) in

Chapter 7, leading to the 95% confidence interval

(11)

Thus, at least in the case of two-tailed tests, we could actually
employ the confidence intervals of Chapter 7 to test the hypothesis. A
similar result for one-tailed tests would require one-sided confidence
intervals.

Example 8.2. Consider Example 8.1. A 95% confidence interval for
Example 8.1 is the following

x
n

x
n

− ≤ ≤ −1 96 1 96. .σ µ σ
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which is

1570 − 23.52 ≤ µ ≤ 1570 + 23.52

This leads to an interval of (1546.48, 1593.52). Notice that this
does not contain the alleged mean of 1600, thus leading us to reject H0.

1570
1 96 120

100
1570

1 96 120

100
− ≤ ≤ +( . )( ) ( . )( )µ
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Curve Fitting

Very often in practice a relationship is found
to exist between two (or more) variables,
and one wishes to express this relationship
in mathematical form by determining an
equation connecting the variables.

A first step is the collection of data showing corresponding values
of the variables. For example, suppose x and y denote, respectively, the
height and weight of an adult male. Then a sample of n individuals
would reveal the heights x1, x2, …, xn and the corresponding weights y1,

y2,…, yn.

A next step is to plot the points (x1, y1), (x2, y2),…, (xn, yn) on a rec-

tangular coordinate system. The resulting set of points is sometimes
called a scatter diagram.

From the scatter diagram it is often possible to visualize a smooth
curve approximating the data. Such a curve is called an approximating
curve. In Figure 9-1, for example, the data appear to be approximated
well by a straight line, and we say that a linear relationship exists
between the variables. In Figure 9-2, however, although a relationship
exists between the variables, it is not a linear relationship and so we call
it a nonlinear relationship. In Figure 9-3 there appears to be no rela-
tionship between the variables.

Figure 9-1
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Figure 9-2

Figure 9-3

The general problem of finding equations approximating curves
that fit given sets of data is called curve fitting. In practice the type of
equation is often suggested from the scatter diagram. For Figure 9-1 we
could use a straight line:

y = a + bx

while for Figure 9-2 we could try a parabola or quadratic curve:

y = a + bx + cx2

For the purposes of this book, we will only concern ourselves with
the data sets exhibiting a linear relationship.
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Sometimes it helps to plot scatter diagrams in terms of transformed
variables. For example, if log y vs. log x leads to a straight line, we
would try log y = a + bx as an equation for the approximating curve.

Regression

One of the main purposes of curve fitting is to esti-
mate one of the variables (the dependent variable)
from the other (the independent variable). The
process of estimation is often referred to as a
regression. If y is to be estimated from x by means
of some equation, we call the equation a regression
equation of y on x and the corresponding curve a
regression curve of y on x. Since we are only con-
sidering the linear case, we can call this the regres-
sion line of y on x.

The Method of Least Squares

Generally, more than one curve of a given type will appear to fit a set of
data. To avoid individual judgment in constructing lines, parabolas, or
other approximating curves, it is necessary to agree on a definition of a
“best-fitting line,” “best-fitting parabola,” etc.

To motivate a possible definition, consider Figure 9-4 in which the
data points are (x1,y1),...,(xn,yn). For a given value of x, say x1, there will
be a difference between the value y1 and the corresponding value as
determined by the curve C. We denote the difference by d1, which is
sometimes referred to as a deviation error, or residual and may be pos-
itive, negative, or zero. Similarly, corresponding values x2, …, xn, we
obtain the deviations d2 ,…, dn.
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Figure 9-4

A measure of the fit of the curve C to the set of data is provided by

the quantity . If this is small, the fit is good; if it is large, 

the fit is bad. We therefore make the following definition.

Definition Of all curves in a given family of curves approximat-
ing a set of n data points, a curve having the property
that

= a minimum

is called a best-fitting curve in the family.

A curve having this property is said to fit the data in the least-
squares sense and is called a least-squares regression curve, or simply
a least-squares curve. A line having this property is called a least-
squares line; a parabola that has this property is called a least-squares
parabola; etc.

It is customary to employ the new definition when x is the inde-
pendent variable and y is the dependent variable. If x is the dependent
variable, the definition is modified by considering horizontal deviations
instead of vertical deviations, which amounts to interchanging the x and

d d dn1
2

2
2 2+ +L

d d dn1
2

2
2 2+ +L
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y axes. These two definitions lead in general to two different least-
squares curves. Unless otherwise specified we shall consider y the
dependent and x the independent variable

The Least-Squares Line

By using the above definition, we can show that the least-squares line
approximating the set of points (x1,y1),...,(xn,yn) has the equation

y = a + bx (1)

where the constants a and b are determined by solving simultaneously
the equations

(2)

which are called the normal equations for the least-squares line. Note

that we have for brevity used , instead of , .x yj j
j

n

=
∑

1

yj
j

n

=
∑

1

xy∑y∑

xy a x b x= + ∑∑∑ 2

y an b x= + ∑∑
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The normal equation (2) is easily remembered by observing that the
first equation can be obtained formally by summing on both sides of (1),
while the second equation is obtained formally by first multiplying both
sides of (1) by x and then summing. Of course, this is not a derivation
of the normal equations but only a means for remembering them.

The values of a and b obtained from (2) are given by

(3)

The result for b can also be written as

(4)

Here, as usual, a bar indicates mean, e.g. . Division 

of both sides of the first normal equation in (2) by n yields

y– = a + bx– (5)

If desired, we can first find b from (3) or (4) and then use (5) to find
a = y– − bx–. This is equivalent to writing the least-squares line as

y − y– = b(x − x–)    or    (6)

The result (6) shows that the constant b, which is the slope of the
line (1), is the fundamental constant in determining the line. From (6) it
is also seen that the least-squares line passes through the point (x–,y–),
which is called the centroid or center of gravity of the data.

y y
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The slope b of the regression line is independent of the origin of the
coordinates. This means that if we make the transformation (often
called a translation of axes) given by

(7)

where h and k are any constants, then b is also given by

(8)

where x, y have simply been replaced by [for this reason we say
that b is invariant under the transformation (7)]. It should be noted,
however, that a, which determines the intercept on the x axis, does
depend on the origin (and so is not invariant).

In the particular case where , (8) simplifies to

(9)

The results (8) and (9) are often useful in simplifying the labor
involved in obtaining the least-squares line.

The above remarks also hold for the regression line of x on y. The
results are formally obtained by simply interchanging x and y. For
example, the least-squares regression line of x on y is

(10)

It should be noted that in general (10) is not the same as (6).
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Example 9.1. Table 9-1 shows the respective heights x and y of a
sample of 12 fathers and their oldest sons. Find the least-squares regres-
sion line of y on x.

Table 9-1

The regression line of y on x is given by y = ax + b are obtained by solv-
ing the normal equations

and

The sums are computed as follows:

xy a x b x= + ∑∑∑ 2y an b x= + ∑∑
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Table 9-2

Using these sums, the normal equations become

For which we find a = 35.82 and b = 0.476, so that y = 35.82 + 0.476x
is the equation for the regression line.

The Least-Squares Regression Line in Terms

of Sample Variances and Covariance

The sample variances and covariance of x and y are given by

(11)s
x x

n
s

y y

n
s

x x y y
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In terms of these, the least-squares regression lines of y on x and x
on y can be written, respectively, as

and (12)

if we formally define the sample correlation coefficient by 

(13)

then (12) can be written 

and (14)

In view of the fact that (x − x–) / sx and (y − y–) / sy are standardized
sample values or standard scores, the results in (14) provide a simple
way of remembering the regression lines. It is clear that the two lines in
(14) are different unless r = ±1, in which case all sample points lie in a
line and there is perfect linear correlation and regression.

It is also of interest to note that if the two regression lines (14) are
written as y = ax + b, x = c + dy, respectively, then

bd = r2 (15)

Up to now we have not considered the precise significance of the
correlation coefficient but have only defined it formally in terms of the
variances and covariance. 
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Standard Error of Estimate

If we let yest denote the estimated value of y for a given value of x, as

obtained from the regression curve of y on x, then a measure of the scat-
ter about the regression curve is supplied by the quantity

(16)

which is called the standard error of estimate y on x. Since

, as used in the definition we saw earlier, we see

that out of all possible regression curves the least-squares curve has the
smallest standard error of estimate.

In the case of a regression line yest = a + bx, with a and b given by
(2), we have

(17)

or

(18)

We can also express s2
y,x for the least-squares regression line in

terms of variance and correlation coefficient as

(19)

from which it incidentally follows as a corollary that r2 ≤ 1, i.e., −1 ≤ r
≤ 1.

s s ry x y, ( )2 2 21= −

s
y y b x x y y

ny x− =
− − − −∑∑2

2( ) ( )( )

s
y a y b xy

ny x,
2

2

=
− − ∑∑∑

( )y y dest− =∑ ∑2 2

S
y y

ny x
est

, =
−( )∑ 2

110 PROBABILITY AND STATISTICS



The standard error of estimate has properties analogous to those of
standard deviation. For example, if we construct pairs of lines parallel
to the regression line of y on x at respective vertical distances sy,x, and
2sy,x, and 3sy,x from it, we should find if n is large enough that there
would be included between these pairs of lines about 68%, 95%, and
99.7% of the sample points, respectively. 

Just as there is an unbiased estimate of population variance given
by ŝ2 = ns2 / (n − 1), so there is an unbiased estimate of the square of the
standard error of estimate. This is given by ŝ2

y,x = nŝ2
y,x / (n − 2). For this

reason some statisticians prefer to give (16) with n – 2 instead of n in
the denominator.

The above remarks are easily modified for the regression line of x
on y (in which case the standard error of estimate is denoted by sx,y) or
for nonlinear or multiple regression.

The Linear Correlation Coefficient

Up to now we have defined the correlation coefficient formally by (13)
but have not examined its significance. In attempting to do this, let us
note that from (19) and the definitions of sy,x and sy, we have

(20)

Now we can show that
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The quantity on the left of (21) is called the total variation. The first
sum on the right of (21) is then called the unexplained variation, while
the second sum is called the explained variation. This terminology aris-
es because the deviations y − yest behave in a random or unpredictable
manner while the deviations yest − y– are explained by the least-squares
regression line and so tend to follow a definite pattern. It follows from
(20) and (21) that

explained variation  
total variation (22)

Therefore, r2 can be interpreted as the fraction
of the total variation that is explained by the least-
squares regression line. In other words, r measures
how well the least-squares regression line fits the
sample data. If the total variation is all explained
by the regression line, i.e., r2 = 1 or r = ±1, we say
that there is a perfect linear correlation (and in
such case also perfect linear regression). On the
other hand, if the total variation is all unexplained, then the explained
variation is zero and so r = 0. In practice the quantity r2 , sometimes call
the coefficient of determination, lies between 0 and 1.

The correlation coefficient can be computed from either of the
results

(23)

or

explained variation
total variation              (24)
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which for linear regression are equivalent. The formula (23) is often
referred to as the product-moment formula for linear regression.

Formulas equivalent to those above, which are often used in prac-
tice, are

(25)

and

(26)

If we use the transformation on (7), we find

(27)

which shows that r is invariant under a translation of axes. In particular,
if h = x–, k = y–, (27) becomes 

(28)

which is often useful in computation.
The linear correlation coefficient may be positive or negative. If r

is positive, y tends to increase with x (the slope of the least-squares
regression line is positive) while if r is negative, y tends to decrease
with x (the slope is negative). The sign is automatically taken into
account if we use the result (23), (25), (26), (27), or (28). However, if
we use (24) to obtain r, we must apply the proper sign.
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Generalized Correlation Coefficient

The definition (23) [or any equivalent forms (25) through (28)] for the
correlation coefficient involves only sample values x, y. Consequently,
it yields the same number for all forms of regression curves and is use-
less as a measure of fit, except in the case of linear regression, where it
happens to coincide with (24). However, the latter definition, i.e.,

explained variation 
total variation             (29)

does reflect the form of the regression curve (via the yest) and so is suit-

able as the definition of a generalized correlation coefficient r. We use
(29) to obtain nonlinear correlation coefficients (which measure how
well a nonlinear regression curve fits the data) or, by appropriate gen-
eralization, multiple correlation coefficients. The connection (19)
between the correlation coefficient and the standard error of estimate
holds as well for nonlinear correlation.

Example 9.2. Find the coefficient of determination and the coeffi-
cient of correlation from Example 8.2.

Recall that the correlation of determination is r2 :

r2  = explained variation=
total variation

The coefficient of correlation is simply r.

r2 0 4938 0 7027= ± = ±. .

19 22

38 92
0 4938

.

.
.=

r
y y

y y
est2

2

2=
−

−
∑
∑

( )

( )
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Since the variable yest increases as x increases (i.e., the slope of the
regression line is positive), the correlation is positive, and we therefore
write r = 0.7027, or r = 0.70 to two significant figures.

Since a correlation coefficient merely measures how well a given
regression curve (or surface) fits sample data, it is clearly senseless to
use a linear correlation coefficient where the data is nonlinear. Suppose,
however, that one does apply (23) to nonlinear data and obtains a value
that is numerically considerably less than 1. Then the conclusion to be
drawn is not that there is little correlation (a conclusion sometimes
reached by those unfamiliar with the fundamentals of correlation theo-
ry) but that there is little linear correlation. There may be in fact a large
nonlinear correlation.

Correlation and Dependence

Whenever two random variables X and Y have a nonzero correlation
coefficient, r, we know that they are dependent in the probability sense.
Furthermore, we can use an equation of the form (6) to predict the value
of Y from the value of X.

You Need to Know  �
It is important to realize that “correlation” and “depen-

dence” in the above sense do not necessarily imply a

direct causation interdependence of X and Y.
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Example 9.3. If X represents teachers’ salaries over the years while
Y represents the amount of crime, the correlation coefficient may be dif-
ferent from zero and we may be able to find a regression line predicting
one variable from the other. But we would hardly be willing to say that
there is a direct interdependence between X and Y.
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The Multinomial Distribution

Suppose that events A1, A2,…, Ak are mutually exclusive, and can occur
with respective probabilities p1, p2, …, pk where p1 + p2 + … + pk + 1. If
X1, X2, …, Xk are the random variables, respectively, giving the number
of times that A1, A2,…, Ak occur in a total of n trials, so that X1 + X2 +
... Xk = n, then

(1)

where n1 + n2 + … nk = n, is the joint probability function for the random
variables X1, X2, …, Xk.

This distribution, which is a generalization of the binomial distrib-
ution, is called the multinomial distribution since the equation above is
the general term in the multinomial expansion of (p1 + p2 + … pk)

n.

The Hypergeometric Distribution

Suppose that a box contains b blue marbles and r red marbles. Let us
perform n trials of an experiment in which a marble is chosen at ran-
dom, its color observed, and then the marble is put back in the box. This
type of experiment is often referred to as sampling with replacement. In
such a case, if X is the random variable denoting the number of blue
marbles chosen (successes) in n trials, then using the binomial distribu-
tion we see that the probability of exactly x successes is

, x = 0, 1, …, n (2)

since p = b / (b + r), q = 1 − p = r / (b + r).

P X x
n

x
b r

b r

x n x

n( )
( )

= = 



 +

−

P X n X n X n
n

n n n
p p pk k

k

n n
k
nk k( , , , )

! ! !1 1 2 2
1 2

1 2
1= = = =K

L
L
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If we modify the above so that sampling is without replacement,
i.e., the marbles are not replaced after being chosen, then 

,    x = max(0, n − r),..., min(n,b)    (3)

This is the hypergeometric distribution. The mean and variance for
this distribution are

(4)

If we let the total number of blue and red marbles be N, while the
proportions of blue and red marbles are p and q = 1 – p, respectively,
then

or      b − Np,     r = Nq

This leads us to the following

(5)

(6)µ σ= = −
−

np
npq N n

N
,

( )2

1

P X x

Np

x

Nq

n x

N

n

( )= =





 −












p
b

b r

b

N
q

r

b r

r

N
=

+
= =

+
=,

µ σ=
+

= + −
+ + −

nb

b r

nbr b r n

b r b r
,

( )

( ) ( )
2

2 1
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Note that as N → ∞ (or N is large when compared with n), these
two formulas reduce to the following

(7)

µ = np,       σ2 = npq (8)

Notice that this is the same as the mean and variance for the bino-
mial distribution. The results are just what we would expect, since for
large N, sampling without replacement is practically identical to sam-
pling with replacement.

Example 10.1 A box contains 6 blue marbles and 4 red marbles. An
experiment is performed in which a marble is chosen at random and its
color is observed, but the marble is not replaced. Find the probability that
after 5 trials of the experiment, 3 blue marbles will have been chosen.

The number of different ways of selecting 3 blue marbles out of 6

marbles is . The number of different ways of selecting the remaining

2 marbles out of the 4 red marbles is . Therefore, the number of dif-

ferent samples containing 3 blue marbles and 2 red marbles is .

Now the total number of different ways of selecting 5 marbles out

of the 10 marbles (6 + 4) in the box is . Therefore, the required
probability is given by

10

5






6

3

4

2











4

2






6

3






P X x
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−
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The Uniform Distribution

A random variable X is said to be uniformly distributed in a ≤ x ≤ b if
its density function is

(9)

and the distribution is called a uniform distribution.
The distribution function is given by

(10)

The mean and variance are, respectively

(11)

The Cauchy Distribution 

A random variable X is said to be Cauchy distributed, or to have the
Cauchy distribution, if the density function of X is

µ σ= + = −1

2

1

12
2 2( ), ( )a b b a

F x P X x

x a

x a b a a x b

x b

( ) ( ) ( ) / ( )= ≤ =
<

− − ≤ <
≥







0

1

f x
b a a x b

otherwise
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/ ( )
=

− ≤ ≤



1

0

6
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4

2

10

5

10

21


















=
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(12)

The density function is symmetrical about x = 0 so that its median
is zero. However, the mean and variance do not exist. 

The Gamma Distribution

A random variable X is said to have the gamma distribution, or to be
gamma distributed, if the density function is

(α,β > 0)        (13)

where Γ(α) is the gamma function (see Appendix A). The mean and
variance are given by

µ = αβ σ2 = αβ2 (14)

The Beta Distribution

A random variable is said to have the beta distribution, or to be beta dis-
tributed, if the density function is

(α, β > 0)    (15)

f x

x x

B
x

otherwise
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− −α β
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x e
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− −α
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π 2 2 0
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where B(α,β) is the beta function (see Appendix A). In view of the rela-
tion between the beta and gamma functions, the beta distribution can
also be defined by the density function 

(16)

where α, β are positive. The mean and variance are

(17)

For α > 1, β > 1 there is a unique mode at the value

xmode = (18)

The Chi-Square Distribution

Let X1, X2, …,Xv be v independent normally distributed random vari-

ables with mean zero and variance one. Consider the random variable

χ2 = X2
1 + X2

2 + ... + X2
v (19)

where χ2 is called chi square. Then we can show that for all x ≥ 0,

α
α β

−
+ −

1

2

µ α
α β

σ αβ
α β α β

=
+

=
+ + +

,
( ) ( )

2
2 1

f x
x x x

otherwise

( )

( )

( ) ( )
( )

=

+ − < <








− −Γ
Γ Γ

α β
α β

α β1 11 0 1

0
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(20)

and P(χ2 ≤ x) = 0 for x > 0.
The distribution above is called the chi-square distribution, and v is

called the number of degrees of freedom. The distribution defined above
has corresponding density function given by

(21)

It is seen that the chi-square distribution is a special case of the
gamma distribution with α = v / 2 and β = 2. Therefore,

µ = v,      σ 2 = 2v (22)

For large v (v ≥ 30), we can show that is very near-

ly normally distributed with mean 0 and variance one.
Three theorems that will be useful in later work are as follows:

Theorem 10-1: Let X1, X2, …, Xv be independent normally random
variables with mean 0 and variance 1. Then χ2 = X2

1 +
X2

2 + ... + X2
v is chi square distributed with v degrees of

freedom.

Theorem 10-2: Let U1, U2, …, Uk be independent random variables
that are chi square distributed with v1, v2, …, vk
degrees of freedom, respectively. Then their sum W =
U1 + U2 +…Uk is chi square distributed with v1 + v2 +
...vk degrees of freedom.

2 2 12χ − −v

f x
v

x e x

x

v
v x

( )
( / )/

( / ) /

=
>

≤










− −1

2 2
0
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2
2 1 2
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u e duv
v u
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( / ) /χ2
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2 1 2

0

1

2 2
≤ = − −∫Γ
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Theorem 10-3: Let V1 and V2 be independent random variables.
Suppose that V1 is chi square distributed with v1
degrees of freedom while V = V1 = V2 is chi square
distributed with v degrees of freedom, where v > v1.
Then V2 is chi square distributed with v − v1 degrees
of freedom.

In connection with the chi-square distribution, the t distribution, the
F distribution, and others, it is common in statistical work to use the
same symbol for both the random variable and a value of the random
variable. Therefore, percentile values of the chi-square distribution for

v degrees of freedom are denoted by , or briefly if v is under-

stood, and not by or xp. (See Appendix D.) This is an ambiguous

notation, and the reader should use care with it, especially when chang-
ing variables in density functions.

Example 10.2. The graph of the chi-square distribution with 5

degrees of freedom is shown in Figure 10-1. Find the values for 
for which the shaded area on the right = 0.05 and the total shaded area
= 0.05.

Figure 10-1

χ χ1
2

2
2,

χ p v,
2

χ p
2χ p v,

2
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If the shaded area on the right is 0.05, then the area to the left of is

(1 – 0.05) = 0.95, and represents the 95th percentile, .
Referring to the table in Appendix D, proceed downward under

the column headed v until entry 5 is reached. Then proceed right to the

column headed . The result, 11.1, is the required value of χ2.
Secondly, since the distribution is not symmetric, there are many

values for which the total shaded area = 0.05. For example, the right-
handed shaded area could be 0.04 while the left-handed area is 0.01. It
is customary, however, unless otherwise specified, to choose the two
areas equal. In this case, then, each area = 0.025.

If the shaded area on the right is 0.025, the area to the left of is

1 – 0.025 = 0.975 and represents the 97.5th percentile , which

from Appendix D is 12.8.
Similarly, if the shaded area on the left is 0.025, the area to the left

of is 0.025 and represents the 2.5th percentile, , which 
equals 0.831.

Therefore, the values are 0.831 and 12.8.

Student’s t Distribution

If a random variable has the density function

−∞ < t < ∞ (23)

it is said to have the Student’s t distribution, briefly the t distribution,
with v degrees of freedom. If v is large (v ≥ 30), the graph of f(t) close-
ly approximates the normal curve, as indicated in Figure 10-2. 

f t
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Figure 10-2

Percentile values of the t distribution for v degrees of freedom 
are denoted by tp,v or briefly tp if v is understood. For a table giving 
such values, see Appendix C. Since the t distribution is symmetrical, 
t1−p = −tp; for example, t0.5 = −t0.95.

For the t distribution we have

µ = 0         and        (v > 2)      (24)

The following theorem is important in later work.

Theorem 10-4: Let Y and Z be independent random variables, where
Y is normally distributed with mean 0 and variance 1
while Z is chi square distributed with v degrees of
freedom. Then the random variable 

(25)

has the t distribution with v degrees of freedom.

T
Y

Z v
=

/

σ 2

2
=

−
v

v
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Example 10.3. The graph of Student’s t distribution with 9 degrees
of freedom is shown in Figure 10-3. Find the value of t1 for which the

shaded area on the right = 0.05 and the total unshaded area = 0.99.

Figure 10-3

If the shaded area on the right is 0.05, then the area to the left of t1 is (1
− 0.05) = 0.095, and t1 represents the 95th percentile, t0.95. Referring to
the table in Appendix C, proceed downward under the column headed v
until entry 9 is reached. Then proceed right to the column headed t0.95.
The result 1.83 is the required value of t.

Next, if the total unshaded area is 0.99, then the total shaded area
is (1 − 0.99) = 0.01, and the shaded area to the right is 0.01 / 2 = 0.005.
From the table we find t0.995 = 3.25.

The F Distribution

A random variable is said to have the F distribution (named after R. A.
Fisher) with v1 and v2 degrees of freedom if its density function is given

by
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Percentile values of the F distribution for v1, v2 degrees of freedom

are denoted by Fp,v1,v2, or briefly Fp if v1 and v2 are understood. 

For a table giving such values in the case where p = 0.95 and p =
0.99, see Appendix E.

The mean and variance are given, respectively, by

(v2 > 2)      and     (27)

The distribution has a unique mode at the value

umode = (v1 > 2)          (28)

The following theorems are important in later work.

Theorem 11-5: Let V1 and V2 be independent random variables that

are chi square distributed with v1 and v2 degrees of

freedom, respectively. Then the random variable

(29)

has the F distribution with v1 and v2 degrees of free-

dom.

Theorem 10-6: (30)F
Fp v v

p v v
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Relationships Among Chi-Square, 

t, and F Distributions

Theorem 10-7: (31)

Theorem 10-8: (32)

Example 10.4. Verify Theorem 10-7 by showing that .

Compare the entries in the first column of the F0.95 table in Appendix E

with those in the t distribution under t0.975. We see that

161 = (12.71)2,  18.5 = (4.30)2,  10.1 = (3.18)2,   7.71 = (2.78)2, etc.,

which provides the required verification.

Example 10.5. Verify Theorem 10-8 for p = 0.99.

Compare the entries in the last row of the F0.99 table in Appendix E (cor-

responding to v2 = ∞) with the entries under in Appendix D. Then
we see that

χ0 99
2

.

F t0 95 0 975
2

. .=

F
vp v
p v

, ,
,

∞ =
χ2

F tp v p v1 1 1 2
2

− −=, , ( / ),

Remember 
While specially used with small sam-
ples, Student’s t distribution, the chi-
square distribution, and the F distri-
bution are all valid for large sample
sizes as well.
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etc.,

which provides the required verification.

6 63
6 63

1
4 61

9 21

2
3 78

11 3

3
3 32

13 3

4
.

.
, .

.
, .

.
, .

.
,= = = =
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Special Sums

The following are some of the sums of series that arise in practice. By
definition, 0! = 1. Where the series is infinite, the range of convergence
is indicated.

1.

2.

3. all x

4. all x

5. all x

6.
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Eulers’ Formulas

8. ,        

9.
,         

The Gamma Function

The gamma function, denoted by Γ(n) is denoted by

n > 0

A recurrence formula is given by

Γ(n + 1) = nΓ(n)

where Γ(1) = 1. An extension of the gamma function to n < 0 can be
obtained by use of the recurrence function above. 

If n is a positive integer, then

Γ(n + 1) = n!

For this reason Γ(n) sometimes called the factorial function. An impor-
tant property of the gamma function is that

For , this gives

Γ 1

2




 = π

p = 1

2

Γ Γ( ) ( )
sin

p p
p

1− = π
π

Γ( )n t e dtn t= − −
∞

∫ 1

0

sinθ
θ θ

= − −e e

i

i i

2
cosθ

θ θ
= + −e ei i

2

e ii− = −θ θ θcos sine iiθ θ θ= +cos sin
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For large values of n we have Stirling’s asymptotic formula:

The Beta Function

The beta function, denoted by B(m, n), is defined as

m > 0, n > 0

It is related to the gamma function by

Special Integrals

10. a > 0

11. a > 0, m > −1
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15. a > 0, p > 0

16. a > 0

17. a > 0

where

is called the complementary error function.

18. a > 0, ω> 0

19. m > 0, nsin cos
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APPENDIX B: Areas under the Standard Normal Curve  137
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APPENDIX C: Student’s t Distribution 139
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APPENDIX D: Chi-Square Distribution 141
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APPENDIX F: Values of e−λ 147
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Factorial function, 133
F distribution, 128–31, 142–45
Frequency distributions, 72–74

Gamma distribution, 122
Gamma function, 133
Gaussian distribution, 45–51
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cient, 114–15
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Hypergeometric distribution,
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Hypothesis and significance, 85–
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Independent events, 8–9
Independent variable, 102
Interquartile range, 20–21
Interval probability, 35

Law of large numbers, 56–57
Least-squares line, 104–10
Least-squares method, 102–04
Level of significance, 87–88
Linear correlation coefficient,
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Linear regression, 112
Linear relationship, 100

Mathematical topics, 132–35
Mean, 15–16, 64–67
Measures of central tendency, 15
Measures of dispersion, 18
Median, 16–17
Method of least squares, 102–04
Mode, 17
Multinomial distribution, 118

n factorial, 11
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54, 55, 88–89
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55, 55
Polygon graph, 73
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Principle of counting, 10
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Probability distributions, 117–31
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Quadratic curve, 101

Random experiments, 2
Random numbers, 60, 148
Random samples, 60–63 
Random variables, 23–57
Region of acceptance, 89
Region of nonsignificance, 89
Region of rejection, 89
Region of significance, 89
Regression, 102
Reliability, 76

Sample mean, 64–67
Sample spaces and points, 2–3
Sample statistics, 61–63
Sample variance, 71–72
Sampling distributions, 63–70
Sampling theory, 58–74
Scatter, 18, 39
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Scatter diagram, 100–02
Skewness, 21–22
Slope, 105
Special integrals, 134–35
Special sums, 132
Special tests, 93–97
Standard deviation, 18–19, 28–
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Standard error, 63, 110–11
Standard normal curve, 46
Standard normal density function,

45–46
Standard score, 46
Standard variable, 45
Statistical decisions, 85–86
Statistical hypothesis, 86
Stirling’s approximation to n!,
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Stirling’s asymptotic formula, 134
Stochastic variable, 23
Student’s t distribution, 126–28,
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t distribution, see Student’s t dis-
tribution
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Test of hypothesis and signifi-
cance, 85–98
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expectation, 30
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Student’s t, 127, 130–31
variance, 30–33

Transformed variables, 102
Translation of axes, 106
Two-tailed tests, 90
Type I and Type II errors, 87

Unbiased estimate, 71, 75–76
Uniform distribution, 121
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Variance, 18–19, 28–29, 30–33,
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Variation, 112
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