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Markers’ report

Olympiad marking

Both candidates and their teachers will find it helpful to know something of the general principles
involved in marking Olympiad-type papers. These preliminary paragraphs therefore serve as an
exposition of the ‘philosophy’ which has guided both the setting and marking of all such papers
at all age levels, both nationally and internationally.

What we are looking for is full solutions to problems. This involves identifying a suitable strategy,
explaining why your strategy solves the problem, and then carrying it out to produce an answer
or prove the required result. In marking each question, we look at the solution synoptically
and decide whether the candidate has some sort of overall strategy or not. An answer which is
essentially a solution, but might contain either errors of calculation, flaws in logic, omission of
cases or technical faults, will be marked on a ‘10 minus’ basis. One question we often ask is: if
we were to have the benefit of a two-minute interview with this candidate, could they correct
the error or fill the gap? On the other hand, an answer which shows no sign of being a genuine
solution is marked on a ‘0 plus’ basis; up to 3 marks might be awarded for particular cases or
insights.

This approach is therefore rather different from what happens in public examinations such as
GCSE, AS and A level, where credit is given for the ability to carry out individual techniques
regardless of how these techniques fit into a protracted argument. It is therefore important that
candidates taking Olympiad papers realise the importance of the comment in the rubric about
trying to finish whole questions rather than attempting lots of disconnected parts.
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General comments

We were impressed with the high standard of the competition this year. It was particularly
pleasing to see so many candidates having the confidence to engage with later questions: a vast
majority scored marks on Question 4 and nearly half did so on Question 5.

The quality of explanations was also improved compared to previous years, particularly in
geometry. Most candidates clearly understand the importance of justifying their reasoning rather
than giving a single numerical answer. We were pleased that a significant number of candidates
answered part (a) in Questions 1, 4 and 5 and then attempted to use the results in part (b).

We saw many elegant and creative solutions, some of which we present as alternative solutions
below. Many candidates demonstrated real mathematical potential, coming up with their own
strategies to solve problems in clearly unfamiliar areas. There were candidates who achieved a
high mark for the whole paper and, even more pleasingly, many who produced excellent solutions
to individual questions.

One of the most common mistakes was making unjustified assumptions, sometimes inadvertently
assuming the thing we are trying to prove. This was most apparent in Question 2, where some
candidates used properties of isosceles triangles before proving that the triangle in question is
indeed isosceles, and in Question 5 part (a), where many made claims such as ’the remainder of
a square number is always a square’.

Candidates are often unsure what they can assume and what needs to be proved. Some spend
too much time explaining well-known results, while others lose marks for not justifying more
complicated claims. A useful guide may be thinking about trying to explain your solution to a
class mate.

The 2015 Mathematical Olympiad for Girls attracted 1577 entries. The scripts were marked on
10th and 11th October in Cambridge by a team of Emily Bain, Natalie Behague, Magdalena
Burrows, Andrew Carlotti, Andrea Chlebikova, Philip Coggins, James Cooper, James Cranch,
Tim Cross, Richard Freeland, Adam Goucher, Maria Holdcroft, Daniel Hu, Andrew Jobbings,
Vesna Kadelburg, Sam Maltby, Matei Mandache, David Mestel, Jessica Mulpas, Joseph Myers,
Vicky Neale, Peter Neumann, Sylvia Neumann, Martin Orr, Roger Patterson, David Phillips, Eve
Pound, Linden Ralph, Katya Richards, Kasia Warburton, Jerome Watson, and Joanna Yass.
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Question 1

(a) Expand and simplify (a − b)(a2 + ab + b2).
(b) Find the value of

20163 + 20153

20162 − 20152 .

Solution

(a) Expanding out the brackets and simplifying, we find that

(a − b)(a2 + ab + b2) = a3 + a2b + ab2 − a2b − ab2 − b3

= a3 − b3.

(b) Let m = 2016 and n = 2015.

Using the factorisation

m3 + n3 = (m + n)(m2 − mn + n2),

and the difference of two squares m2 − n2 = (m − n)(m + n), we may write the fraction as

(m + n)(m2 − mn + n2)
(m − n)(m + n)

=
m2 − mn + n2

m − n
.

Since in our case m − n = 1, the value of this expression is

20162 − 2016 × 2015 + 20152 = 2016(2016 − 2015) + 20152

= 2016 + 20152

= 4 062 241.

Alternative

(This solution does not use the result of part (a).)

Replace 2015 by n. Then we get

20163 = (n + 1)3

= n3 + 3n2 + 3n + 1,

using the binomial expansion. Therefore the fraction is

(n3 + 3n2 + 3n + 1) + n3

(n2 + 2n + 1) − n2 =
2n3 + 3n2 + 3n + 1

2n + 1
.

Using algebraic division, we obtain

n2 + n + 1 = 20152 + 2015 + 1
= 4 062 241.
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Markers’ comments

Part (a) was not meant to be demanding, but was intended to give an indication of one possible
approach to the second part.

Candidates were usually successful, though a few were unable to collect like terms together after
expanding the brackets.

It is well worth knowing the factorisation

a3 − b3 = (a − b)
(
a2 + ab + b2)

as well as the result for ‘a sum of two cubes’, and results for other powers.

There are a large number of ways of tackling part (b). All correct methods were given credit,
especially if the final answer was also correct.

Many candidates either used (a) directly, with a = 2016 and b = −2015, or used the related
result a3 + b3 = (a + b)

(
a2 − ab + b2) with a = 2016 and b = 2015.

Some chose to ignore (a) and used the binomial theorem to expand (2015 + 1)3 or (2016 − 1)3

(see the alternative solution given above). Those who did this and could manage the resulting
division were often successful.

It was particularly pleasing to see scripts which used some means of simplifying the final
calculation, for example, finding 2015 × 2016 to avoid squaring anything.

Rather too many candidates used brute force arithmetic from the outset—calculating 20153, for
example—rather than looking for any “algebraic” method that might simplify the calculations.
When some working was shown and the results were correct, this approach was rewarded with
full marks, of course, but it is not recommended: apart from anything else, it is very easy to
make a slip.
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Question 2

The diagram shows five polygons placed together edge-to-
edge: two triangles, a regular hexagon and two regular
nonagons.
Prove that each of the triangles is isosceles.

Solution

Label some of the vertices, as shown in the diagram.

E
F

A
D

C

B

First we show that triangle ABD is isosceles. Since the nonagons and the hexagon are regular
and meet edge-to-edge, we have

DA = AE = AB.

This means that triangle ABD is isosceles.

We now look at triangle BCD. From the regular polygons, we find that

BC = BF = AB,

but we don’t know anything about sides CD and BD. So let’s calculate some angles.

Each angle in a regular hexagon is 120° and each angle in a regular nonagon is 140°. Therefore,

∠DAB = 360° − 140° − 140°
= 80°

and
∠ABC = 360° − 140° − 120°

= 100°.

Since we already know that the triangle ABD is isosceles, we can calculate

∠ABD =
180° − 80°

2

= 50°
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and therefore
∠DBC = 100° − 50°

= 50°.

A

D

C

B
80° 50°

50°
50°

We cannot directly find any other angles in triangle BCD. However, triangles BCD and BAD
are congruent (SAS) because

BC = AB, (from regular polygons)
BD = BD (common side)

and ∠CBD = ∠ABC. (each equals 50°)

Since triangle BAD is isosceles, so is triangle BCD (with BC = CD).

Alternative

Each angle in a regular hexagon is 120° and each angle in a regular nonagon is 140°. Therefore,

∠DAB = 360° − 140° − 140°
= 80°

and
∠ABC = 360° − 140° − 120°

= 100°.

E

F

A

D

C

B

100°80°

These two angles add up to 180° so, by the converse of internal angles on parallel lines, we find
that AD and BC are parallel.
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Since the nonagons and the hexagon are regular and meet edge-to-edge, we have

AD = E A = AB = BF = BC.

Hence AD and BC are equal and parallel. It follows that the quadrilateral ABCD is a parallelo-
gram. Therefore the sides AB and CD are equal.

But we already know that AB = BC = DA, so all four sides of ABCD are in fact equal.
Therefore the two required triangles are isosceles.

Alternative

We have already seen that AB = AD, so that triangle ABD is isosceles. Now AB = BF = BC
and so also triangle ABC is isosceles. Each angle in a regular hexagon is 120° and each angle in
a regular nonagon is 140°. Therefore,

∠DAB = 360° − 140° − 140°
= 80°,

∠ABC = 360° − 140° − 120°
= 100°,

and

∠ABD =
180° − 80°

2
= 50°.

A

D

C

B
80° 50°

50°
50°

Thus BD bisects ∠ABC. Since triangle ABC is isosceles, BD is the perpendicular bisector of
AC. Then also, since AC is perpendicular to BD and triangle ABD is isosceles, AC bisects
BD. If X is the point where AC and BD meet then each triangle ABX , BCX , CDX , DAX is
right-angled at X with one sides equal to AX , another equal to BX . Therefore their hypotenuses
are equal (they are congruent), and DC = BC. Hence triangle BCD is isosceles.

Note

The quadrilateral ABCD is in fact a rhombus, as noted by several candidates.

Markers’ comments

This question saw many successful attempts, considerably more so than geometry questions in
the past.

Quite a few candidates were concerned about checking that the triangles are not equilateral.
Since every equilateral triangle is also isosceles, this was not necessary.
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Many thought that they had to prove that base angles, as well as two sides, are equal. This
sometimes resulted in loss of marks, when candidates used the fact that the triangle is isosceles
without explicitly stating it.

Some candidates made an unjustified assumption that another congruent hexagon can be drawn
using the side CD. But this assumes that CD is equal to the other three sides, which is what
the question asked us to prove. This strategy sometimes went with an unsuccessful appeal to
symmetry. Although E, A, C are collinear (since ∠BAC, as base angle of the isosceles triangle
ABC, is 40°), until the problem has been solved, the line E AC is a line of symmetry only of the
figure consisting of the two nonagons and triangle ABD.

There were perhaps surprisingly few diagrams. Some students who did draw diagrams annotated
them with the clause ‘Not drawn to scale’. That makes no sense in a context like this—there is
no relevant scale as the question is one of pure geometry. Although the diagram was given in the
question, most candidates introduced their own labelling, and it would have been helpful to show
this. Some candidates wisely chose to draw just relevant parts of the diagram in appropriate
places in their solutions, and these were very helpful.

It was great to see many clear explanations of reasoning; we hope that candidates will find our
solutions helpful for giving an idea of the level of detail we were looking for.
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Question 3

A ladybird is going for a wander around a 10 × 10 board, subject
to the following three rules (see the diagram).

(i) She starts in the top left cell, labelled S.
(ii) She only moves left, right or down, as indicated.

(iii) She never goes back to a cell that she has already visited.
In how many different ways can she reach the bottom row of cells,
shaded grey?

S

Solution

Once the ladybird (here called Ella) has reached the dth row she can move left or right, or not
at all, to one of 10 cells in that row before her descent to the next row (unless she has already
reached the last row).

Since Ella can’t go back on herself, there is only one way for her to reach any of the ten cells in
the dth row.

For each of rows 1, 2, . . . , 9, Ella has 10 options for the point at which she descends. Therefore
there are 109, that is, 1 000 000 000, ways for Ella to reach the bottom row of cells.

Note

Wherever Ella starts in the top row, the answer is the same.

Also, if the board is of shape m × n (that is, m rows, n columns) then Ella can reach the bottom
row from anywhere in the top row in nm−1 different ways.

Markers’ comments

This question was the least popular, as an efficient strategy was difficult to identify. Those who
did find it were usually successful in explaining why it worked.

The key observation is that, because of rule (iii), the ladybird has only one way of getting from
one cell to another one on the same row. This means that we only need to count the number of
choices for a cell from which to leave each row.

It was great to see some candidates starting with smaller boards, such as 2 × 2 or 3 × 3. This
helped them to get a feel for the problem, and they were then able to predict the answer for the
10 × 10 board. Even where a candidate has spotted a pattern in this way, it is still important to
explain why the pattern continues to hold for the larger board, by going back back to the problem
and analysing the rules given.

It is important to be clear about exactly what is being counted, and to ensure that the multiplication
makes sense. For example, if you are counting “the number of ways from the dth row to the next
row”, you might end up with a figure of 100 (for rows after the first), because there are 10 places
to enter the row, 10 places to leave it, and exactly one path from entry to exit given those two
places. This figure is correct, but it is not correct to produce an answer of 10 × 1008 from it,
because the ladybird must enter each row in the same column she left the previous row. Scripts
that were too unclear about what was being counted tended to receive low marks.
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Question 4

(a) A tournament has n contestants. Each contestant plays exactly one game against every
other contestant. Explain why the total number of games is 1

2 n(n − 1).
(b) In a particular chess tournament, every contestant is supposed to play exactly one game

against every other contestant. However, contestant A withdrew from the tournament
after playing only ten games, and contestant B withdrew after just one game.
A total of 55 games were played.
Did A and B play each other?

Solution

(a) Contestants never play themselves but do play all the other n − 1 competitors. Therefore
there are n(n − 1) pairs (X,Y ) such that X plays Y , with the contestants named in that order.

The game in which X plays Y is the same as that in which Y plays X however, so naming
the contestants in order means that each game is counted twice. Therefore the total number
of games is 1

2 n(n − 1).

(b) Suppose that there are m contestants other than A and B. The number of games those m
contestants played with each other is 1

2 m(m − 1).

There are an additional 10 games played by A. If B did not play A then there is one
additional game played by B, so the total number of games is

1
2

m(m − 1) + 10 + 1 = 55.

This simplifies to m(m−1) = 88, and this equation has no integer solutions, since m(m−1) ≤
72 when m ≤ 9 and m(m − 1) ≥ 90 when m ≥ 10.

Since we’ve found a contradiction by assuming they didn’t play each other, we can be sure
that A and B did play each other.

Note

It’s not logically necessary, but we can analyse the situation where A and B did play as well.
In this case there are no additional games played by B, so the equation for the total number
of games played is simply

1
2

m(m − 1) + 10 = 55.

This simplifies to m(m − 1) = 90, which has the solution m = 10. Hence, when we include
A and B as well, there were 12 contestants at the start of the tournament.

Alternative

An alternative way of producing the formula for the number of matches is to mimic the
proof of part (a), and try to count all participations. In the case where A and B did play each
other, and as above there were m contestants not including A and B then there were:

• one contestant, A, who participated in ten games;
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• one contestant, B, who participated in one game;

• nine contestants who each participated in m games (consisting of one game with A
and m − 1 games against the other unnamed contestants);

• m − 9 contestants who participated in m − 1 matches (one match against each of the
other unnamed contestants).

Given that, by counting participations we are counting each match twice, the formula for
the number of matches is

1
2

(10 + 1 + 9m + (m − 9)(m − 1)) =
1
2

(
m2 − m + 20

)
=

1
2

m(m − 1) + 10

exactly as above.

The situation where A and B didn’t play each other certainly can be analysed similarly, but
is a little fiddlier. There are two cases: one where B’s single opponent was also among A’s
opponents, and one where they weren’t.

As a result, very few students who attempted this technique were completely successful.

Alternative

Another slick and clever method, which was spotted in full by a few students and in part by
a few more, is to work out the number of contestants first, by exploring the cases with more
than 12 and with fewer than 12 and showing they both produce contradictions.

Indeed, if there were 11 or fewer candidates, then at most 55 matches would be scheduled
in the first place, which is impossible given that B dropped out after only one of them.

However, if there were 13 or more candidates, then the 11 or more who did not leave early
would have played at least 55 matches between them, which is impossible given that A and
B also played.

Hence there were exactly 12 candidates. The ten other than A and B played exactly 45
between them, leaving ten more. A played in all of these, and hence must have played B.

Markers’ comments

There were many good answers to part (a), with clear reasoning carefully explained.

Some candidates tried to explain the meaning of each term in the formula, for example saying
that n − 1 is the number of games per contestant and 1

2 n is the number of games going on at any
time; this is not correct, because n might be odd whereas a number of games must be a whole
number.

In part (b) it is important to realise what we need to prove. There are two possibilities: either A
and B played each other or they didn’t. Logically speaking, the most important thing is to find
the one that’s impossible; once we know that, we know that the other is the only possibility. (If
we find that one of them is possible, on the other hand, that doesn’t mean automatically that the
other is impossible. Quite a lot of candidates concentrated on showing that it was possible for A
and B to have played each other, but this is not sufficient to solve the problem.)

Candidates can’t be expected to guess the right answer, so most scripts analysed both cases.
There were many successful attempts, including some alternative solutions presented above.
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Some candidates estimated that there must have been around 12 contestants and only analysed
this special case. This does not provide a complete proof, unless an argument like that in the
second alternative solution above is used.

Some candidates used the formula from (a) to create an equation like 1
2 n(n − 1) = 55. But this

formula only applies if everyone played everyone else, which was not the case here.
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Question 5

(a) The integer N is a square. Find, with proof, all possible remainders when N is divided
by 16.

(b) Find all positive integers m and n such that

m! + 76 = n2.

[The notation m! stands for the factorial of m, that is, m! = m× (m−1)× · · ·×2×1.
For example, 4! = 4 × 3 × 2 × 1.]

Solution

(a) Write N = n2 and n = 8k + r where r , the remainder when n is divided by 8, is one of 0, 1,
2, . . . , 7. Then N = (8k + r)2 = 64k2 + 16kr + r2, and this leaves the same remainder as
does r2 when divided by 16.

Those remainders R are shown in the following table.

r R r R

0 0 4 0
1 1 5 9
2 4 6 4
3 9 7 1

Thus the possible remainders when N is divided by 16 are 0, 1, 4 and 9.

(b) If m ≥ 6 then m! is a multiple of 6! = 720, which itself is a multiple of 16. Therefore the
remainder when m! + 76 is divided by 16 is the same as the remainder when 76 is divided
by 16, which is 12. From part (a) we know, then, that m! + 76 cannot be a square if m ≥ 6.

If m is 1, 2 or 3, then the remainders after division of m! + 76 by 16 are 13, 14 and 2
respectively, and so m! + 76 cannot be a square.

But if m = 4 then m! + 76 = 24 + 76 = 100 = 102, and if m = 5 then m! + 76 = 120 + 76 =
196 = 142. Therefore the only pairs (m,n) of positive integers such that m! + 76 = n2 are
(4,10) and (5,14).

Note

We could look at remainders on division by some other numbers. For example, a similar
argument works if we look at division by 7. For m ≥ 7, m! + 76 gives remainder 6 when
divided by 7, and we can show that a square number cannot give this remainder.

Markers’ comments

There were some good solutions to the first part of the question. A lot of candidates found that 0,
1, 4 and 9 can all be obtained as remainders, but not all of them were careful to show that there
are the only possibilities. Testing cases to find patterns can be a very helpful way of making

© UKMT September 2015 www.ukmt.org.uk 13

http://\UKMTweb 


Mathematical Olympiad for Girls 2015 Markers’ report

progress in mathematics, but it then has to be backed up by careful analysis and understanding
of the patterns in order to be sure that they continue.

There seemed to be some confusion about whether 0 counts as a remainder; we accepted both ‘no
remainder’ and ‘remainder 0’ as correct answers. Some candidates gave remainders as fractions
( 1

16 ,
4

16 ,
9

16 ); this is not correct but was not penalised here.

Candidates often quoted “rules” they observed in this specific case, without realising that these
rules did not hold in general. For example, we often saw the claim that ‘the remainder of a
square number is always a square number’. This is not true; for example dividing 16 by 9 gives
remainder 7.

It was very pleasing to see so many candidates having the confidence to attempt the second part
of final question. Many engaged with the question sufficiently to find both solutions, and a good
number realised the importance of part (a) and tried looking at remainders.

Some candidates tried looking at division by 10, possibly because they have seen problems
involving last digits of factorials. This approach does not work here, because 76 gives remainder
6 which is possible for a square number.

The crucial observation, that m! is a multiple of 16 for m ≥ 6, needed some justification. Once
all but five possible cases are eliminated, we needed to see some evidence that these five cases
were all checked.
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