

1. A 20% of $30 \%=0.2 \times 0.3=0.06=6 \%$.
2. D $\frac{785}{15}=52 \frac{1}{3}$ hence 785 is not a multiple of 15 . But $\frac{135}{15}=9, \frac{315}{15}=21, \frac{555}{15}=37, \frac{915}{15}=61$.
3. E $1-32+81-64+25-6=5$.
4. \mathbf{E} Steve achieved $\frac{150}{10} \times 4.5$ miles per gallon which is $15 \times 4.5=67.5 \approx 70$.
5. A As the ratio of the radii is 3:4 then the number of revolutions made by the larger wheel is $120000 \times \frac{3}{4}=90000$.
6. C If at most two marbles of each colour are chosen, the maximum number we can choose is 8 , corresponding to 2 of each. Therefore, if 9 are chosen, we must have at least 3 of one colour, but this statement is not true if 9 is replaced by any number less than 9 .
7. B The top left 2 by 2 outlined block must contain a 3 and a 4 and this can be done in two ways. For each choice there is only one way to complete the entire mini-sudoku.
8. C The increase in entries from 2007 to 2008 is $92690-87400=5290$.

Hence the percentage increase is $\frac{5290}{87400} \times 100 \%=\frac{5290}{874} \% \approx \frac{5400}{900} \%=6 \%$.
(The exact value is $6 \frac{1}{19}$.)
9. D As T is the midpoint of $Q R$ then $Q T=\frac{1}{2} x$.

Since $\angle U Q T=\angle S Q R=45^{\circ}$ and $\angle Q U T=90^{\circ}, \angle U T Q=45^{\circ}$. Thus triangle $Q T U$ is isosceles with $U Q=U T$. In triangle $Q T U$, by Pythagoras' Theorem, $Q T^{2}=Q U^{2}+T U^{2}$. Hence $\left(\frac{1}{2} x\right)^{2}=2 T U^{2}$ so $T U^{2}=\frac{1}{8} x^{2}$ giving $T U=\frac{x}{2 \sqrt{ } 2}$.

10. B A number is a multiple of 6 precisely when it is both a multiple of 2 and of 3 . To be a multiple of 2 , it will need to end with an even digit; i.e. 0 or 2 . If it ends with 0 , the sum of the other two digits must be a multiple of 3 ; and only $3=1+2$ or $6=1+5$ are possible. That gives the numbers $120,210,150,510$. If it ends with 2 , the sum of the others must be $1=0+1$ or $4=1+3$. That gives 102,132 and 312 .
11. $\mathbf{C} \sqrt{ } 2+\sqrt{ } 2+\sqrt{ } 2+\sqrt{ } 2=4 \sqrt{ } 2=2^{2} \times 2^{1 / 2}=2^{2 \frac{1}{2}}$. Hence $x=2 \frac{1}{2}$.
12. $\mathbf{E} \cos 50^{\circ}<\sin 50^{\circ}<1$. Hence $\frac{1}{\cos 50^{\circ}}>\frac{1}{\sin 50^{\circ}}>1>\sin 50^{\circ}>\cos 50^{\circ}$. $\tan 50^{\circ}=\frac{\sin 50^{\circ}}{\cos 50^{\circ}}<\frac{1}{\cos 50^{\circ}}$ hence $\frac{1}{\cos 50^{\circ}}$ has the greatest value.
13. $\mathbf{C} \quad x-\frac{1}{x}=y-\frac{1}{y}$ hence $x^{2} y-y=x y^{2}-x$. Thus $x y(y-x)+y-x=0$. Therefore $(y-x)(x y+1)=0$. As $x \neq y$ then $y-x \neq 0$.
Hence $x y+1=0$ giving $x y=-1$.
14. D Let the external angle of the regular polygon be x°.

Hence $\angle X Q R=\angle X S R=x^{\circ}$ and reflex angle $\angle Q R S=(180+x)^{\circ}$.
As the sum of the angles in the quadrilateral $Q R S X$ is
 360° then $140+x+x+180+x=360$.
Hence $3 x=40$ and the polygon has $\frac{360}{40 \div 3}=27$ sides.
15. D Let $\frac{n}{100-n}=x$ where x is an integer. Hence $n=100 x-n x$.

Hence $n(1+x)=100 x$ giving $n=\frac{100 x}{1+x}$.
Now x and $1+x$ can have no common factors. Therefore $1+x$ must be a factor of 100 and can be any of them.
Hence $1+x \in\{ \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20, \pm 25, \pm 50, \pm 100\}$ thus the number of possible integers n is 18 .
16. B Since $x^{4}-y^{4}=2009$ it follows that $\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=2009$.

But $x^{2}+y^{2}=49$ hence $x^{2}-y^{2}=\frac{2009}{49}=41$.
Subtracting gives $2 y^{2}=8$ hence $y^{2}=4$. Since $y>0, y=2$.
17. \mathbf{C} The greatest possible value of f is achieved by a rectangular cut through an edge of a cube and the furthest edge from it. If we take x as the side of the cube, by Pythagoras' Theorem the extra surface area formed by the cut is $2 \sqrt{ } 2 x^{2}$. Hence $f=\frac{2 \sqrt{ } 2 x^{2}}{6 x^{2}}=\frac{\sqrt{ } 2}{3}$.
18. A We have $y^{2}=x(2-x)$. Now $y^{2} \geqslant 0$ for all real y hence $x(2-x) \geqslant 0$.

Hence $0 \leqslant x \leqslant 2$. In fact we can rewrite the equation as $(x-1)^{2}+y^{2}=1$; so this is a circle of radius 1 with centre (1,0).
19. C The distance cycled by Hamish between noon and 4 pm is $4 x$.

The distance cycled by Ben between 2 pm and 4 pm is $2 y$.
They meet at 4 pm hence $4 x+2 y=51$ or $2 x+2(x+y)=51(*)$.
If they had both started at noon then they would have met at $2: 50 \mathrm{pm}$ and so $2 \frac{5}{6}(x+y)=51$.
Hence $x+y=51 \times \frac{6}{17}=18$. Hence from (*) $2 x+2 \times 18=51$.
Hence $2 x=15$ giving $x=7 \frac{1}{2}$. Thus $y=10 \frac{1}{2}$.
20. E If $\angle R P Q=90^{\circ}$ then P lies on a semicircle of diameter $R Q$.

Let x be the side-length of the square QRST.
Hence the area of the semicircle $R P Q=\frac{1}{2} \pi\left(\frac{1}{2} x\right)^{2}=\frac{1}{8} \pi x^{2}$ and the area of square $Q R S T$ is x^{2}.
$\angle R P Q$ is acute when P is outside the semicircle $R P Q$.

Hence the probability that $\angle R P Q$ is acute is $\frac{x^{2}-\frac{1}{8} \pi x^{2}}{x^{2}}=1-\frac{\pi}{8}$.
21. B Let r be the radius of the small cone and h the height.

Let l_{1} and l_{2} be the slant heights of the small and large cones respectively.
By Pythagoras' Theorem $I_{2}=\sqrt{6^{2}+8^{2}}=10$.
Using similar triangles, $\frac{l_{1}}{r}=\frac{10}{6}$ so $l_{1}=\frac{5}{3} r$ and $\frac{h}{8}=\frac{r}{6}$ giving $h=\frac{4}{3} r$.
Thus the area of the curved surface of the frustum is

$$
\pi \times 6 \times 10-\pi \times r \times \frac{5}{3} \times r=\pi\left(60-\frac{5 r^{2}}{3}\right)
$$

The sum of the areas of the two circles is $\pi \times 6^{2}+\pi \times r^{2}=\pi\left(36+r^{2}\right)$.
Hence $\pi\left(60-\frac{5 r^{2}}{3}\right)=\pi\left(36+r^{2}\right)$ and so $24=\frac{8 r^{2}}{3}$ giving $r=3$, so $h=\frac{4}{3} \times 3=4$.
Therefore, in cms, the height of the frustum is $8-4=4$.
22. C Let the perpendicular distance between $E H$ and $F G$ be $x \mathrm{~cm}$ and the area of the parallelogram EFGH be $y \mathrm{~cm}^{2}$. Thus $y=F G \times x$. The area of triangle $E F N$ is $\frac{1}{2} F N \times x=\frac{1}{2} \times \frac{1}{2} \times F G \times x=\frac{1}{4} y \mathrm{~cm}^{2}$. Likewise the areas of triangles EHM and NGM are $\frac{1}{4} y \mathrm{~cm}^{2}$ and $\frac{1}{8} y \mathrm{~cm}^{2}$ respectively.
The area of triangle $E N M$ is $12 \mathrm{~cm}^{2}$, hence $y=12+\frac{5}{8} y$ and so $y=32$. Hence the area of the parallelogram EFGH is $32 \mathrm{~cm}^{2}$.

23. D Label the rows of the triangles from left to right as follows: $a_{1}, \ldots, a_{5} ; b_{1}, \ldots, b_{10}$ and c_{1}, \ldots, c_{5}.
Now 1 cannot be at $a_{4}, a_{5}, b_{7}, b_{8}$ or c_{4} hence 1 must be at c_{3}.
Hence b_{4} and b_{5} are 2 and 5 in either order. Hence a_{3} is 1 or 4 .
But 1 cannot be at a_{4} or b_{7} hence 1 must be at a_{3}.
4 cannot be at b_{3} thus 4 is at a_{2}.
Hence the number on the face with the question mark must be 4 .
24. B A shaded triangle is congruent to an unshaded triangle (ASA).

Hence the area of the dashed square is equal to the area of the cross and both are 5 .
Thus the side-length of the dashed square is $\sqrt{5}$.
Hence the sides of a shaded triangle are: $\frac{1}{2}, 1$ and $\frac{1}{2} \sqrt{5}$.
Now the perpendicular distance between the squares is equal to the
 altitude, h, of the shaded triangle. The area of such a triangle is
$\frac{1}{2} \times\left(\frac{1}{2} \times 1\right)=\frac{1}{4}$ so that $\frac{1}{2} \times\left(\frac{1}{2} \sqrt{5} \times h\right)=\frac{1}{4}$ which gives $h=\frac{1}{\sqrt{5}}$.
Hence the length of the sides of the outer square are $\sqrt{5}+2 \times \frac{1}{\sqrt{5}}=\frac{5}{\sqrt{5}}+\frac{2}{\sqrt{5}}=\frac{7}{\sqrt{5}}$.
Thus the area of the large square is $\left(\frac{7}{\sqrt{5}}\right)^{2}=\frac{49}{5}$.
25. A The left-hand side of the equation can be written as

$$
(a+1)(b+1)(c+1)(d+1)-1
$$

Hence

$$
(a+1)(b+1)(c+1)(d+1)=2010 .
$$

Now expressing 2010 as a product of primes gives $2010=2 \times 3 \times 5 \times 67$ hence $a+b+c+d=1+2+4+66=73$.

