

1. C $2 \times 2008+2008 \times 8=10 \times 2008=20080$.
2. B The cost per pound is $£ \frac{255}{1250} \approx £ \frac{1}{5}=20 \mathrm{p}$.
3. D $\frac{1}{2^{6}}+\frac{1}{6^{2}}=\frac{3^{2}+2^{4}}{2^{6} \times 3^{2}}=\frac{25}{2^{6} \times 3^{2}}=\frac{5^{2}}{\left(2^{3} \times 3\right)^{2}}$. Hence the answer is $\frac{5}{2^{3} \times 3}=\frac{5}{24}$.
4. Crom the units column we see that $S=0$. Then the tens column shows that $R=9$, the hundreds column that $Q=1$, and the thousands that $P=6$. So $P+Q+R+S=16$.
5. E Since 1% of $£ 400=£ 4$, the total VAT charged was $£ 4 \times 17.5=£ 70$, giving a total cost of $£ 400+£ 70=£ 470$. Therefore the minimum number of entries needed is 94 .
6. \mathbf{E}

45
123
We number the squares to identify them. The only line of symmetry possible is the diagonal through 1 and 5 . For a symmetric shading, if 4 is
3 shaded, then so too must be 2; so either both are shaded or neither.
Likewise 3 and 6 go together and provide 2 more choices. Whether 1 is shaded or not will not affect a symmetry, and this gives a further 2 choices; and the same applies to 5 . Overall, therefore, there are $2^{4}=16$ choices. However, one of these is the choice to shade no squares, which is excluded by the question.
7. D In 1.8 miles there are 1.8×5280 feet $=18 \times 528$ feet, while in 8 months there are roughly $8 \times 30 \times 24 \times 60$ minutes. Hence the time to 'run' one foot in minutes is roughly $\frac{10 \times 30 \times 20 \times 60}{20 \times 500}=36$ minutes.
8. A In triangle $A C D, \angle C A D=(180-x-y)^{\circ}$.

As $A B=A F$, triangle $A B F$ is isosceles hence
$\angle A B F=\angle A F B=\frac{1}{2}(x+y)^{\circ}$.
Thus $\angle D F E=\angle A F B=\frac{1}{2}(x+y)^{\circ}$ (vertically opposite angles). Now in triangle $D F E$,
$\angle F D E=(180-y)^{\circ}$. Hence
 $z^{\circ}=180^{\circ}-\angle D F E-\angle F D E=\frac{1}{2}(y-x)^{\circ}$.
9. D A number is divisible by 9 if, and only if, the sum of its digits is divisible by 9 .

The given number is $N+2$, where $N=222 \ldots 220$ has 2007 2s. Since $2007=223 \times 9, N$ is divisible by 9 and the required remainder is therefore 2 .
10. D By inspection

$$
\frac{3}{4}=\frac{1}{2}+\frac{1}{4} ; \quad \frac{3}{5}=\frac{1}{2}+\frac{1}{10} ; \quad \frac{3}{6}=\frac{1}{3}+\frac{1}{6} ; \quad \frac{3}{8}=\frac{1}{4}+\frac{1}{8} .
$$

However $\frac{3}{7} \neq \frac{1}{m}+\frac{1}{n}$. [To see why, suppose that $\frac{3}{7}=\frac{1}{m}+\frac{1}{n}$ and note that $\frac{1}{m}>\frac{1}{n}$ or vice versa. We will suppose the former. Then $\frac{1}{m} \geqslant \frac{3}{14}>\frac{3}{15}$ and so $\frac{1}{m}>\frac{1}{5}$ and $m<5$. Also $\frac{1}{m}<\frac{3}{7}$ and so $3 m>7$. Hence $m \geqslant 3$. So $m=4$ or $m=3$. However $\frac{3}{7}-\frac{1}{4}=\frac{5}{28}$ and $\frac{3}{7}-\frac{1}{3}=\frac{2}{21}$ neither of which has the form $\frac{1}{n}$.]
11. B Let the six points where lines meet on the dot lattice be A, B, C, D, E, F as shown and let the other two points of intersection be P (where $A C$ and $B F$ meet) and Q (where $C E$ and $D F$ meet).
Triangles $A P B$ and $C P F$ are similar with base lengths in the ratio 3:5. Hence triangle CPF has height $\frac{5}{8} \times 2=\frac{5}{4}$ units and base length 5 units so that its area is $\frac{1}{2} \times \frac{5}{4} \times 5$ square units. Since
 the same is true of triangle $C Q F$, the required area is $\frac{5}{4} \times 5=6 \frac{1}{4}$ square units.
12. C There are 365 days in a normal year and 366 in a leap year. Apart from certain exceptions (none of which occurs in this period) a leap year occurs every 4 years. Now $365=7 \times 52+1$ and $366=7 \times 52+2$. Hence each date moves on by 5 days every 4 years. So in 60 years, it moves on 75 days. Since $75=7 \times 10+5$, that means it moves on to a Thursday.
13. C Since $1280=2^{8} \times 5=2^{8}\left(2^{0}+2^{2}\right)=2^{8}+2^{10}$, we may take $m=8$ and $n=10$ (or vice versa) to get $m+n=8+10=18$. It is easy to check that there are no other possibilities.
14. D The internal angle of a regular pentagon is 108°. Let A be the centre of a touching circle, as shown. Since $O A$ bisects $\angle R A Q, \angle O A Q=54^{\circ}$. Also, triangle $O A Q$ is right-angled at Q (radius perpendicular to tangent). Since $A Q=1$, $O Q=\tan 54^{\circ}$.

15. A The sequence proceeds as follows: $13,40,20,10,5,16,8,4,2,1,4,2,1 \ldots$. The block $4,2,1$ repeats ad infinitum starting after t_{7}. But $2008-7=2001$ and $2001=3 \times 667$. Hence t_{2008} is the third term in the 667th such block and is therefore 1.
16. A Adding the three given equations gives $4(x+y+z)=3000$. Therefore $x+y+z=750$. So the mean is $\frac{750}{3}=250$.
17. E Let ' X ' be a single digit. If $2008-200 X=2+0+0+X$ then $8-X=2+X$ so $X=3$. So Alice (being the younger) could have been born in 2003. Next if $2008-199 X=1+9+9+X$ then $18-X=19+X$, which is impossible. Similarly if $2008-198 X=1+9+8+X$ then $28-X=18+X$, so $X=5$. Thus Alice or Andy could have been born in 1985. Finally if $2008-19 Y X=1+9+X+Y$ for some digit $Y \leqslant 7$, then $108-Y X=10+Y+X$. Hence $98=Y X+Y+X$ which is impossible, since $Y X+Y+X$ is at most $79+7+9=95$. Hence there are no more possible dates and so Andy was born in 1985 and Alice in 2003.
18. C Since $X Y^{2}=18, Y Z^{2}=32$ and $X Z^{2}=50$, we have $X Z^{2}=X Y^{2}+Y Z^{2}$. Hence by the converse of Pythagoras' Theorem, $\angle X Y Z=90^{\circ}$. Since the angle in a semi-circle is 90° the segment $X Z$ is the diameter of the specified circle. Hence the radius is $\frac{1}{2} \sqrt{50}$ and the area of the circle is $\frac{50 \pi}{4}=\frac{25 \pi}{2}$.
19. B Let $199 p+1=X^{2}$. Then $199 p=X^{2}-1=(X+1)(X-1)$. Note that 197 is prime. If p is also to be prime then either $X+1=199$, in which case $X-1=197$, or $X-1=199$, in which case $X+1=201$ (and $201=3 \times 67$ is not prime). Note that $X-1=1, X+1=199 p$ is impossible. Hence $p=197$ is the only possibility.
20. B Let r_{1}, r_{2} and r_{3} be the radii of the shaded circle, semicircles and outer circle respectively. A right-angled triangle can be formed with sides $r_{3},\left(r_{1}+r_{2}\right)$ and r_{2}.
Hence, by Pythagoras' Theorem, $r_{3}^{2}=\left(r_{1}+r_{2}\right)^{2}+r_{2}^{2}$. Now $\pi r_{1}^{2}=4$, hence $r_{1}=2 / \sqrt{\pi}$. Likewise $r_{2}=6 / \sqrt{\pi}$. Hence $r_{2}=3 r_{1}$ so that $r_{3}^{2}=\left(r_{1}+3 r_{1}\right)^{2}+\left(3 r_{1}\right)^{2}=25 r_{1}^{2}$. Thus the required area is $25 \times 4=100$.

21. B Since $2008 / 1998$ lies between 1 and $2, a=1$. Subtracting 1 and inverting gives $b+1 /(c+1 / d)=1998 / 10=199+4 / 5$ so that $b=199$. Then $1 /(c+1 / d)=4 / 5$ so that $c+1 / d=5 / 4$ and this gives $c=1$ and $d=4$.
\{Note : This is an example of a continued fraction.\}
22. A Let r be the length of a side of the equilateral triangle.

Hence the width of the rectangle is $r \sin 60^{\circ}+r+r \sin 60^{\circ}=$
$r\left(1+2 \sin 60^{\circ}\right)=r(1+\sqrt{3})$ and its length is $3 r+2 r \sin 60^{\circ}=r(3+\sqrt{3})$.
So the ratio of the length to the width is

$$
(3+\sqrt{3}):(1+\sqrt{3})=\sqrt{3}(1+\sqrt{3}):(1+\sqrt{3})=\sqrt{3}: 1 .
$$

23. B Let $X=x+3$ and $Y=y-3$. Then the given equation becomes $(X+Y)^{2}=X Y$. So $X^{2}+X Y+Y^{2}=0$. However X^{2}, Y^{2} and $X Y\left(=(X+Y)^{2}\right)$ are non-negative.
Hence $X=Y=0$; so $x=-3$ and $y=3$ is the only solution.
24. $\mathbf{E} 1+3+5+7+\ldots+(2 n+1)=(n+1)^{2}$. The n in the three cases given is 12 , $\frac{1}{2}(x-1)$ and $\frac{1}{2}(y-1)$. So, the triangle has sides of length $12+1, \frac{1}{2}(x-1)+1$ and $\frac{1}{2}(y-1)+1$. However the only right-angled triangle having sides of whole number length with hypotenuse 13 is the $(5,12,13)$ triangle. So $x=9$ and $y=23$ (or vice versa). Hence $x+y=32$.
25. D To work out the area of $||x|-2|+||y|-2| \leqslant 4$, we first consider the region $|x|+|y| \leqslant 4$ which is shown in (a). This region is then translated to give $|x-2|+|y-2| \leqslant 4$ as shown in (b).
By properties of the modulus, if the point (x, y) lies in the polygon, then so do $(x,-y)$, $(-x, y)$ and $(-x,-y)$. Thus $||x|-2|+||y|-2| \leqslant 4$ can be obtained from (b) by reflecting in the axes and the origin, as shown in (c).

(a)

(b)

(c)

Hence the required area is 4 times the area in the first quadrant. From (b), the required area in the first quadrant is the area of a square of side $4 \sqrt{2}$ minus two triangles (cut off by the axes) which, combined, make up a square of side $2 \sqrt{2}$. So the area in the first quadrant is $(4 \sqrt{2})^{2}-(2 \sqrt{2})^{2}=32-8=24$.
Hence the area of the polygon is $4 \times 24=96$ square units.

