
British Mathematical Olympiad

Round 1 : Wednesday, 5 December 2001

Time allowed Three and a half hours.

Instructions • Full written solutions - not just answers - are

required, with complete proofs of any assertions

you may make. Marks awarded will depend on the

clarity of your mathematical presentation. Work

in rough first, and then draft your final version

carefully before writing up your best attempt.

Do not hand in rough work.

• One complete solution will gain far more credit

than several unfinished attempts. It is more

important to complete a small number of questions

than to try all five problems.

• Each question carries 10 marks.

• The use of rulers and compasses is allowed, but

calculators and protractors are forbidden.

• Start each question on a fresh sheet of paper. Write

on one side of the paper only. On each sheet of

working write the number of the question in the

top left hand corner and your name, initials and

school in the top right hand corner.

• Complete the cover sheet provided and attach it to

the front of your script, followed by the questions

1,2,3,4,5 in order.

• Staple all the pages neatly together in the top left
hand corner.

Do not turn over until told to do so.
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1. Find all positive integers m,n, where n is odd, that satisfy
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2. The quadrilateral ABCD is inscribed in a circle. The diagonals
AC,BD meet at Q. The sides DA, extended beyond A, and CB,
extended beyond B, meet at P .
Given that CD = CP = DQ, prove that 6 CAD = 60◦.

3. Find all positive real solutions to the equation
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where ⌊t⌋ denotes the largest integer less than or equal to the real
number t.

4. Twelve people are seated around a circular table. In how many ways
can six pairs of people engage in handshakes so that no arms cross?

(Nobody is allowed to shake hands with more than one person at once.)

5. f is a function from Z
+ to Z

+, where Z
+ is the set of non-negative

integers, which has the following properties:-

a) f(n + 1) > f(n) for each n ∈ Z
+,

b) f(n + f(m)) = f(n) + m + 1 for all m,n ∈ Z
+.

Find all possible values of f(2001).


