

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

AQA Level 3 Technical Level IT

Computer Programming

UNIT NUMBER: F/507/6465

Mark scheme

Copyright © 2014 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this
booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any
material that is acknowledged to a third party even for internal use within the centre.

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the
relevant questions, by a panel of subject teachers. This mark scheme includes any amendments
made at the standardisation events which all associates participate in and is the scheme which was
used by them in this examination. The standardisation process ensures that the mark scheme covers
the learners’ responses to questions and that every associate understands and applies it in the same
correct way. As preparation for standardisation, each associate analyses a number of learners’
scripts: alternative answers not already covered by the mark scheme are discussed and legislated for.
If, after the standardisation process, associates encounter unusual answers which have not been
raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of learners’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year’s document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular
examination paper.

Further copies of this mark scheme are available from: aqa.org.uk/tech-levels

 SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

 3 of 14

The following list indicates the correct answers used in marking learners’ responses to the
multiple-choice questions:

KEY LIST

1 D

2 C

3 B

4 D

5 B

06 State three principles of good programming practice.
[3 marks]

Best principles are recommended methods of writing code.

1 mark for each principle

Examples:

• Avoid repetition of code
• Avoid adding functionality until you need it
• Make code as easy to read and understandable as possible
• Write code for person who is going to maintain it
• Follow standard conventions and practice
• Minimise dependencies in other areas of the program
• Place code that has similar functionality within same component
• Avoid optimising until the code is working
• Any other principle that is reasonable

07 Explain how you could demonstrate that user documentation meets the client’s
requirements.

[3 marks]

Learners may also consider user or audience requirements. Documentation could be in any
format, including paper and online.

1 mark for testing:

o with user base/audience
o against client requirements

1 mark for research:
o prior to completing document
o qualitative research on draft

1 mark for citing structure or presentation methods, eg:
o clear, concise, jargon-free writing
o illustrative material

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

 4 of 14

o only necessary technical terms

1 mark for any other valid explanation that assesses standard of documentation against
requirements.

1 mark may be given for expansion points, eg

o testing with user base (1 mark) by giving documentation to the user and asking
them to work through a scripted problem (1 mark for expansion)

08 a) Describe the difference between a global and local variable.
[2 marks]

1 mark for global scope (declared at start), ie can be used in any procedure or subroutine.
1 mark for local scope (declared within subroutine or programming blocks), ie variable not
recognised outside part of program it was declared.

b) State one way in which the limitations of a local variable could be overcome without

changing its type.
[1 mark]

1 mark for overcoming limitations, eg:

o local variable could be passed as a parameter to function/subroutine

09 State two characteristics of patch software and give one risk of using it.
[3 marks]

Characteristics (up to 2 marks)
1 mark for its function, to update/fix/improve a computer program, its data or libraries.
1 mark for recognising it is not a full version of software, eg addresses interim changes that
need to be made, such as security patch.
1 mark for distributed as executable files or modifies the binary.

Risk (1 mark):

o may introduce new bugs
o not tested as exhaustively as a full release
o example of patch that has been problematic
o might break existing functionality

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

 5 of 14

10 a) In the software lifecycle, describe one difference between an open and closed beta.
[2 marks]

1 mark for one difference, eg:

o closed beta tests are filtered, eg to developers, registered customer base, while
open beta are generally not (or less filtered)

o open beta allows more representative testing of problems identified in closed
beta

o open beta more traditionally used with applications, closed beta often used with
gaming

o any other reasonable difference

b) Give one benefit of a closed beta.

[1 mark]

1 mark for a benefit, eg:

o more filtered testing panel, eg:
 selecting (especially gaming) matured and detached people who know

they are testing over enthusiasts who only want to play (esp. gaming)
o more discreet user base, limits reputational damage if testing throws up

fundamental problems
o any other reasonable benefit

11 a) Explain how logging expected and actual results against a bug report might help an
IT Support desk identify a fault.

[2 marks]

Unexpected behaviour might not mean a genuine bug, ie the user is mistaken. By including
expected behaviour, IT Support can assess whether misdiagnosing the expected behaviour
is causing the user to report a bug.

1 mark for user may be mistaken.
1 mark for developer can compare bug report against with expected behaviour.

b) Give one other type of information that could be important if an accurate diagnosis is to

be made.
[1 mark]

1 mark of other type of information, eg:

o browser, hardware, software versions
o memory dump
o any other reasonable type

12 A user can trigger an event in event-driven programming by interacting with the
program, such as through use of the mouse or keyboard. State three more ways an
event can be triggered.

[3 marks]

For each of the following:

1 mark for:

o objects can trigger their own events, eg upon status or value changes

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

 6 of 14

o operating system can trigger events, eg from a timer on a webpage
o by calling the function module in the program
o when an error occurs
o any other acceptable method

13 a) Polymorphism is a characteristic of an object-orientated paradigm. Describe one other
characteristic.

[2 marks]

1 mark for a characteristic, eg:
o abstraction
o encapsulation
o inheritance

1 mark for a description of the characteristic, eg:
o a characteristic of abstraction is

 focusing on the essential and discarding the irrelevant
 using keywords virtual (C++) or abstract and interface (Java)
 puts responsibility on the programmer to implement a class/object

o a characteristic of encapsulation is
 it protects the system from malicious attack
 it is an information hiding mechanism

o a characteristic of inheritance is
 when a class of objects is defined, any subclass can inherit the

definitions
 that subclass need not carry its own definition of data

b) Describe two main benefits of object-orientated programming.

[4 marks]

1 mark for each benefit, for a maximum of 2 marks.

1 mark for a benefit, eg:

o makes code more maintainable
o objects are reusable
o applications are more scalable
o OOP provides a clear modular structure
o OOP provides a good framework for code libraries

1 mark for a description of the benefit
o a benefit of ‘maintainable’ is that

 objects are self-contained
 identifying the source of errors becomes easier

o a benefit of ‘reusable’ is that
 as objects are self-contained, this makes it easy to reuse code in other

systems
o a benefit of ‘scalable’ is that

 the interface provides a roadmap for reusing an object
 the object can be replaced without affecting others
 it is easy to replace inefficient code
 new behaviours can be built from existing objects

o a benefit of ‘modular’ is that it makes it good for defining abstract data types
o a benefit of ‘framework’ is that it is

 a good basis for developing GUIs

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

 7 of 14

14 a) Explain the principle of familiarity when designing a user interface.
[2 marks]

1 mark for understanding principle of familiarity, eg:

o the user’s model is based primarily on experience
o user interface components should reflect the user’s model
o UI design must take account of the experience of the users

1 mark for one point expanding on the principle of familiarity, eg:
o a benefit of familiarity is that user of operating system automatically knows how

to use standard elements, regardless of context
o as well as mirroring the design and concepts of an OS, the principle of familiarity

also suggests that the terminology should be utilised
o a poorly designed interface is the reason why many systems are never used

b) Describe how familiarity could be achieved when designing a user interface in

application for an operating system.
[4 marks]

1 mark for each point or expansion listed, eg:

o Use familiar OS user interface components to offer standard functionality
 search and help techniques
 playback controls
 use of symbols/icons
 reflect style of GUI
 expected menu systems and dialog boxes

o take account of the needs, experience and capabilities of the system users
 this might include considering physical and mental limitations such as

through accessibility features
o there should be consistency in the way that operations are activated

 behaviours should not surprise users
o guidance could be provided that links about to previous behaviour, eg:

 rollover description of an unfamiliar icon

15 a) Describe the technique of pair programming.
[2 marks]

Description of technique (up to 2 marks)

Pair Programming is when two programmers sit side by side next to a single computer to
code an engineering task. The driver/developer writes the code, the observer/navigator
reviews each line of code and the strategic direction of the work.

1 mark for two people working together to code
1 mark for roles of developer/navigator

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

 8 of 14

b) Justify two possible pairings for a pair-programming task.
[4 marks]

Accept other pairings that can be justified (or the weaknesses acknowledged).

1 mark for each pairing, 1 mark for each justification, eg:

Expert Navigator, Expert Developer
o Most productive pairing

Expert Navigator, Novice Developer
o Good way to train staff

16 a) Describe the purpose of workflow testing.
[2 marks]

Workflow testing is scripted testing which replicates specific workflows expected to be the
working style of the user. It’s purpose is to find the bugs most likely to negatively impact on
user workflows.

1 mark for duplicates workflows of the user
1 mark to find bugs that impact user workflows

b) State two advantages and two disadvantages of black box testing.

[4 marks]

Black box (behavioural/acceptance) testing examines functionality of an application based
on its specifications. This method of test can be applied to each and every level of software
testing such as unit, integration, system and acceptance testing.

1 mark for each advantage (max 2 marks), 1 mark for each disadvantage (max 2 marks).

Advantages Disadvantages
Efficient for large code segments Structure/design/implementation not known

to tester
Environment also tested Limited coverage/scenarios
Less skilled testers can test application
with no knowledge of implementation,
programming language or operating
systems.

Tester cannot target specific code segments
or error prone areas, many paths untested

Separate user/developer roles. Reason for failure not always found
Test reproducible Difficult to write test cases/identify enough

inputs
User point-of-view helps identify issues May repeat tests already done by

programmer

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

 9 of 14

17 a) Using appropriate symbols and flow lines draw a flowchart to represent the following
algorithm.

[3 marks]

 Maximum of 3 marks:

o 1 mark for appropriate I/O
accept assigned variables instead of input

o 1 mark for appropriate symbols
o 1 mark for appropriate flow lines

 all arrows must be pointing in right direction and not be omited
o 1 mark for correct logic

b) Describe two benefits of using flowcharts to represent algorithms or processes.

[4 marks]

1 mark for a benefit (for a maximum of two benefits)
1 mark for each description of benefit, eg:

o it allows a complex problem to be functionally decomposed to a number of levels
o visual representation of a concept, clear to all parties without programming

knowledge, easy to explain
o problem can be analysed in more effective way, eg conditional statements
o good program documentation, simple way to store a complex record
o blueprint during the systems analysis and development phase, effective synthesis
o helps in debugging and troubleshooting process, reduces time spent
o more efficient program maintenance

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

 10 of 14

c) Compare and contrast the advantages and disadvantages of the Waterfall and Spiral
development approaches.

[8 marks]

There are two approaches, Waterfall and Spiral

 Advantages Disadvantages
Waterfall • Clear documentation

• Minimum planning overhead
• One phase at a time
• Simple to implement
• Easy identification of

milestones

• Less IT literate customers may
not always know what they want

• Can complicate teamwork if a
stage has to be completed before
moving on

• Customer not involved, so not
always developed for their needs

• Can’t go back to previous stage
Spiral • Simplistic to implement and

execute for projects
• Limited resource allocation
• Iterative framework
• Revisit phases easily
• Realistic model
• Changes to software can be

made at any point
• Customer involved

• Completed phases cannot be
revisited easily, no scope for
backtracking/revising

• Needs close risk assessment
• Client may have to spend a lot of

time with development team
• Often no documentation
• Difficult to fix the start/end of

phase
• Over-involvement of customer

Band Descriptor Marks

4 Candidate has fully compared and contrasted the
advantages and disadvantages of both approaches 7-8 marks

3 Candidate has made some comparisons between the
advantages and disadvantages of both approaches 5-6 marks

2
Candidate has listed some advantages and disadvantages
of both approaches 3-4 marks

1 Candidate has listed some advantages or disadvantages 1-2 marks

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

 11 of 14

18 a) State two possible efficiencies gained by moving blocks of code that are being
repeated, to functions or subroutines.

[2 marks]

1 mark for each efficiency, eg:

o Makes code easier to read/debug
o More flexibility to pass parameters
o You should always try to reuse code where possible
o Mistakes only have to be corrected once, not for each recurrence
o Share code as libraries to plugin to different projects

The following pseudocode has been written to outline a program to input football results
and output a league table and top scorers.

Some areas have been copied and pasted to repeat the code, and already the structure is
beginning to look inefficient.

b) Rewrite the pseudocode to move the duplicate code into separate modules, such as

functions and subroutines.
[10 marks]

The exemplar pseudocode on the following page is not intended as a model answer but
merely to illustrate some of the possible approaches that may be taken. It is not necessary
for the candidate to define variables in the pseudocode, nor for the solution to work in its
entirely.

In addition there are 2 marks available for including the following:

1 mark for appropriate mechanism for automatically going back to the start when
the end is reached

o eg a WEND/WHILE or DO/LOOP statement containing the pseudocode, or
English language equivalent

1 mark for appropriate means of selecting an alternative in response to user input
o eg INPUT followed by IF or CASE statement. There are two aspects to the

code (input and display) and an opportunity to ask the user which path to
take and act accordingly.

Examples of possible approaches are given for the examiner but are not exhaustive;
also see exemplar code.

Band Descriptor Marks

4
Candidate has relocated duplicate code efficiently into
subroutines/functions and passed parameters to them in a
way which adds functionality

7-8 marks

3
Candidate has relocated most duplicate code into
subroutines/functions and passed parameters to them in a
way which adds some functionality

5-6 marks

2
Candidate has relocated some duplicate code into
subroutines/functions and passed parameters to them 3-4 marks

1 Candidate has relocated some duplicate code into
subroutines/functions 1-2 marks

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

 12 of 14

c) Insert comments to explain the elements or structures.
[3 marks]

1 mark for each comment that explains how lines or blocks of code function

// let’s put this in a continuous loop
WHILE (TRUE)

 OUTPUT “WHICH LEAGUE? [1-4]”
 INPUT NumLeague

 // let’s create a menu to choose between input or display
 choose INPUT or DISPLAY from a menu

 IF INPUT is chosen THEN

 // let’s collect this round of game data

 OUTPUT “HOW MANY GAMES TO INPUT?”
 INPUT NumGames

 CALL Input_Results (NumLeague, NumGames)

 Set Method to ‘hi to low on points’

 ELSE

 // choose a method to sort league

 OUTPUT “Which sort method?”
 INPUT Method

 END IF

 CALL Print_League (NumLeague, Method)

 CALL Display_TopScorers (5, Num League)

// let’s complete the loop
WEND

SUB Input_Results (NumLeague, NumGames)
Initialise counter to 1
 WHILE counter is less than or equal to NumGames
 INPUT GameDetails
 CALL Process_League (GameDetails)
 WEND
END SUB

SUB Process_League(GameDetails)
 Process GameDetails into TEAM/SCORE/SCORERS
 Calculate points for game
 Add the points to the team’s total

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

 13 of 14

 Increase team’s games played by 1
 Add the goals to the scorer’s total
END SUB

SUB Print_League (League, Method)
 CALL Sort_League (League, Method)
 display league table (League)
END SUB

SUB Display_TopScorers (NumScorers, League)
Initialise counter to 1
 WHILE counter is less than or equal to NumScorers
 display player number (counter)
 WEND
END SUB

SUB Sort_League (League, Method)
 Sort league table (League) by (Method)
END SUB

SPECIMEN MARK SCHEME – COMPUTER PROGRAMMING

 14 of 14

Assessment Outcomes coverage

Assessment Outcomes Marks and % of
marks available in

section A

Marks and % of
marks available

in section B

Total
marks

AO1: Understand the different
types of computer programming,
languages and the common uses

10 marks

12.5%

0 marks

0%

10

AO2: Analyse the tools and
techniques for planning, design
and development

11 Marks

13.75%

15 marks

18.75%

26

AO3: Evaluate the key features
and techniques used in computer
programming

19 Marks

23.75%

8 marks

10%

27

AO4: Demonstrate the principles
of good program practice and
user interface design

10 Marks

12.5%

7 marks

8.75%

17

Total Marks 50 30 80

Question Assessment

Outcome 1
Assessment
Outcome 2

Assessment
Outcome 3

Assessment
Outcome 4

Question
Total

1 1a (1) 1
2 2e (1) 1
3 2a (1) 1
4 3f (1) 1
5 4b(1) 1
6 4b(3) 3
7 3h(3) 3
8 3a(3) 3
9 3d(3) 3
10 2a(3) 3
11 3d(3) 3
12 1a(3) 3
13 1b(6) 6
14 4a(6) 6
15 2d(6) 6
16 3d(6) 6
17 2d(7) 2b(8) 15
18 3a(8) 4a(2) 4b(5) 15

Totals 10 26 27 17 80

	AQA Level 3 Technical Level IT
	The following list indicates the correct answers used in marking learners’ responses to the multiple-choice questions:
	KEY LIST

	1
	 D
	2
	 C
	3
	 B
	4
	 D
	5
	 B

