Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

Level 3 Technical Level IT: PROGRAMMING

Unit 5 Mathematics for programmers

Wednesday 16 January 2019 Morning

Time allowed: 2 hours

Question

1-5

6

7

8

9

10

For Examiner's Use

Mark

Materials

For this paper you must have:

- a ruler
- a scientific calculator (non-programmable)
- stencils or other drawing equipment (eg flowchart stencils).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- If you need more space use the additional pages at the back of this booklet.
- Include units in all answers, where required, as marks are given for units in some questions.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- There are 50 marks in **Section A** and 30 marks in **Section B**. Both sections should be attempted.

Advice

- In all calculations, show clearly how you work out your answer.
- Use diagrams, where appropriate, to clarify your answers.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

IB/M/Jan19/E9

	Section A		Do not write outside the box
	Answer all questions in this section.		
0 1	Which number is a base 16 number?		
	Tick (✓) one box.	[1 mark]	
	10010110 ₂		
	1238 ₁₀		
	1x0001		
	A7F2		
02	If A=True, B=True and C=False, then which of the following is True?		
	Tick (✓) one box.	[1 mark]	
	(A OR B) AND C		
	(A AND C) OR B		
	(A AND NOT B) OR C		
	(B OR NOT C) AND NOT A		

0 5	What is the next number in the sequence 2, 5, 10, 17?	outside the
	Tick (✓) one box. [1 mark]	
	24	
	25	
	26	
	27	5
06	Using De Morgan's law, simplify the following expression where variables <i>a</i> , <i>b</i> and <i>c</i> are either True or False.	
	not(<i>a</i> or not(<i>b</i> and <i>c</i>)) [2 marks]	
		2

0 7	A computer program has 5 bugs.	Do not write outside the box
	 2 of the bugs can stop the program running. 3 of the bugs can slow down the program. Each bug has equal probability of occurring. 	
07.1	What is the probability of a bug stopping the program? [1 mark]	
07.2	What is the probability of a first bug slowing the program followed by a second bug stopping the program? [1 mark]	
		2
	Turn over for the next question	
	Turn over ►	1

0 8	Amdahl's law is used to calculate the overall speedup of a computer system when the	Do not write outside the box
	Speedup and usage of a new component are known.	
	$S(f, k) = \frac{1}{(1-f) + \frac{f}{k}}$	
	where	
	S is the system's overall speedup	
	f is the fraction of work performed by the new faster component	
	k is the speedup measure of the new component, eg if speedup is 0.2 then k = 1.2	
0 8.1	What are f and k known as in the function S(f, k)? [1 mark]	
08.2	A new CPU that is 0.5 times faster than the old one is installed in a computer system.	
	The new CPU is utilised 0.8 of the time.	
	In your calculation, k = 1.5	
	Calculate the overall speedup of the system using the above formula. [2 marks]	
		3
		Ĺ]

1 0.2

2 32-bit single precision binary floating-point numbers are stored in 3-part format as shown in **Table 1**.

Table	1
-------	---

А	В	С
Sign	Exponent	Significand/Mantissa
1 bit	8 bits	23 bits

Show in **Table 2** how the decimal fraction 47.25 is stored as binary numbers in each of the parts A, B and C.

You need to normalise and apply excess 127.

[3 marks]

Do not write outside the

box

6

Table 2

А	В	С

Turn over for the next question

1 1.3	Draw the logic circuit which represents the logic equation in Question 11.2 .		Do not write outside the box
	Show the two inputs, X and Y , and the single output C .	[3 marks]	
			7
	Turn over for the next question		
	T	urn over ►	

1 2	Figure 1 shows the IP addre	ss of a computer.			Do not write outside the box
		Figure 1			
		192.168.1.67			
	The IP address shown in Figure 1 is partitioned into separate groups as shown below.				
	Network address 24 bits	Subnet number 3 bits	Host number 5 bits		
12.1	Using the IP address shown to and determine the host nu	in Figure 1 , work ou mber of the compute	t which subnet the con er.	nputer belongs	
				[5 marks]	
12.2	How many hosts can the sub	net referred to in Qu	estion 12.1 support?	[1 mark]	

1 3	A set is a general name for a collection of related items.	Do not write outside the box
	Define each type of set listed below.	
	[2 marks]	
	Finite set	
	Overlapping set	
	Question 13 continues on the next page	
	Turn over ►	

14.1	What is a recursive function?	[1 mark]	Do not write outside the box
14.2	What is iteration?	[1 mark]	
14.3	Give two reasons why a programmer would prefer iteration to recursion.	[2 marks]	
	Reason 2		4
	Turn over for the next question		

15.2 Solve the following two simultaneous equations using the matrix method.

3x + 4y = 22x + 3y = 1

The first line of the solution is done for you.

$$\begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Turn over for Section B

	Section B
	Answer all guestions in this section.
1 6	Compilers for programming languages often use Reverse Polish Notation (RPN) to convert infix arithmetic expressions into postfix expressions. RPN provides the correct sequence of CPU instructions to execute the expression.
1 6.1	Convert the following infix expression to a postfix expression. Explain this conversion.
	(3 + 5) * (7 – 2) [3 marks]

ix	outside the box
n of the	
perator is	

Do not write

٦

19

162

1	6	. 2	A stack is a last in first out (LIFO) data structure. When executing the postfix
			expression, worked out in Question 16.1 , items are put (pushed) onto the top of the stack and taken off (popped) from the top of the stack when an arithmetic operator is reached.
			Describe the sequence of push, pop and arithmetic operations a CPU might perform to execute the postfix expression using a stack data structure
			[8 marks]
			Turne and fourthe most successful

1 9

1 7	A new CPU is desig	ned that will have:				Do not outside box	
	 a 12-bit instruction addressing capability within flash memory an 8-bit data addressing capability within RAM storage a 4-bit CPU register selection capability. 						
1 7.1	Complete Table 4.				[3 marks]		
		Table 4					
	The maximum addre	essable flash memory size,	in KB				
	The maximum addre	essable RAM storage, in by	tes				
	Number of registers	available					
1 7.2	A 16-bit instruction c	of this CPU has the following	g forma	at.			
	Operation code 5 bits	Data value 7 bits	Re	gister selector 4 bits			
	The instruction conta	ains hexadecimal number 2	D9F.				
	Determine the binary	y values of the different par	ts of thi	is instruction.	[4 marks]		
	Operation code						
	Data value						
	Register selector						

1 7.3	Another 16-bit instruction has the following format.								
	Operation code 5 bits	Reserved 3 bits	Address 8 bits						
	Determine the hexac	lecimal value of this instru	ction given the following bi	inary values:					
	Operation code: 0b0 Reserved: 0b000 Address: 0b1100101	1101 1		[0].c.]					
					9				
	т	urn over for the next que	estion						
				Turn over ►					

1 8.2	How many sample points are available in the sample space from Question 1	8.1. [1 mark]
1 8.3	Calculate the probability using the probability tree in Question 18.1 of:	[2 marks]
	none of the first three children being born as girls	
	Question 18 continues on the next page	
	Τι	urn over ►

Do not write outside the

box

	First dice									
	+	1	2	3	4	5	6			
	1	2	3	4	5	6	7			
dice	2	3	4	5	6	7				
o puo	3	4	5	6	7					
Sec	4	5	6	7						
	5	6	7							
	6	7								

Determine, the probability of two dice having a:

[2 marks]

Total of 12 _____

1 8.4

Total of 8

1 8.5

A computer system has six electronic components. Two of the components are defective. Two of the components are to be randomly selected as a pair for testing.

The defective two components are identified as **D1**, **D2** and the four working components are identified as **G1** to **G4**.

Identify all valid sample points in **Table 6** and leave the rest blank. One sample point is shown.

[1 mark]

										Limand
					Table 6	5				
			D1	D2	G1	G2	G3	G4		
		D1								
		D2				Х				
	-	G1								
	-	G2								
	-	G3								
		G4								
18.6	Determine, at least one both select	using e of two ed com	the sam	s are d	efective	STIONS	the pro	bability	that:	2 marks]
			E	ND OF	F QUE	STION	6			

Turn over ►

10

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

