

LEVEL 3 TECHNICAL LEVEL

IT: Programming

F/507/6465 – Unit 2 Computer Programming

Mark scheme

June 2018

Version/Stage: 1.0 Final

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

2

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant

questions, by a panel of subject teachers. This mark scheme includes any amendments made at the

standardisation events which all associates participate in and is the scheme which was used by them in

this examination. The standardisation process ensures that the mark scheme covers the students’

responses to questions and that every associate understands and applies it in the same correct way.

As preparation for standardisation each associate analyses a number of students’ scripts. Alternative

answers not already covered by the mark scheme are discussed and legislated for. If, after the

standardisation process, associates encounter unusual answers which have not been raised they are

required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and

expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark

schemes on the basis of one year’s document should be avoided; whilst the guiding principles of

assessment remain constant, details will change, depending on the content of a particular examination

paper.

Further copies of this mark scheme are available from aqa.org.uk

The following annotation is used in the mark scheme:

; - means a single mark

// - means alternative response

/ - means an alternative word or sub-phrase

A - means acceptable creditworthy answer

R - means reject answer as not creditworthy

NE - means not enough

I - means ignore

DPT - in some questions a specific error made by a candidate, if repeated, could result in the candidate

failing to gain more than one mark. The DPT label indicates that this mistake should only result in

a candidate losing one mark on the first occasion that the error is made. Provided that the answer

remains understandable, subsequent marks should be awarded as if the error was not being

repeated.

Copyright © 2018 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this
booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any
material that is acknowledged to a third party even for internal use within the centre.

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

3

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The

descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as

instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in
the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in
small and specific parts of the answer where the student has not performed quite as well as the rest. If
the answer covers different aspects of different levels of the mark scheme you should use a best fit
approach for defining the level and then use the variability of the response to help decide the mark within
the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can then
use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

4

Question Guidance Mark

01 C 1

02 C 1

03 D 1

04 B 1

05 C 1

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

5

Question Guidance Mark

06.1 1 mark (max 2 marks) for each characteristic, eg:

 ease of use, closest to human language/easier to write/read

 needs to be compiled/translated before execution // source code

 ease of error detection

 machine independent

 library functions

 object-oriented // uses data types/structures, eg variables, arrays, classes,
objects

 more abstraction, machine’s representation of information hidden

 selection statements and repetition/iteration constructs

 clear, well-defined syntax // some based on non-English languages

 (often) multi-paradigm.

2

06.2 1 mark (max 1 mark) for an advantage, eg:

 doesn’t need to be translated

 speed/efficient/optimal use of memory // execution time is faster

 more control, with qualifying statement (eg over execution/what happens at
level of CPU)

 machine code is 1s and 0s which the processor understands

 machine code is 1s and 0s which equates to electrical pulse on/off.

1

07.1 1 mark for:

 Logical Composition [or inversion] with the Assistance of Computers.
1

07.2 1 mark for an example, eg:

 those who work in creative fields

 programmers working in artificial intelligence

 specific example, eg users in design, music.

1

08.1 1 mark for organisation, eg:

 a statement showing that quad=four people

 an arrangement of four, eg one driver and three navigators; director, tester,
two developers;

 everyone sits around a computer which is projected onto a screen.

1

08.2 1 mark for usage, eg:

 quad programming is good for team training/as a teaching tool

 …particularly when introducing new architectural areas
 in agile software development // extreme programming
 for larger projects (eg due to development cost) // complex software
 pooled expertise // description of one of the roles
 fewer coding mistakes.

A. Reasonable justification of answer to Question 08.1.
A. Similar justifications to pair programming.

1

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

6

Question Guidance Mark

09.1 1 mark for:

 index of arrays starts at zero // 31 is assigned to (index) 0 not 1
1

09.2 1 mark for:

 month.
1

09.3 1 mark for:

 11.

A. daysinmonths(11)

1

09.4 1 mark for reason, eg:

 there is nothing returned from the function (1 mark) in Lines 03 and 04 and
the program prints the output from the function (1 mark)

 the output is printed within the function (1 mark) but no value is returned
(1 mark)

 in Python, a function always returns ‘None’ if no return statement has been
reached (1 mark)

 the function returns no value (1 mark) the code attempts to print the returned
value (1 mark)

 the word ‘print’ before the function call is causing it to print its value (1 mark)
which is None at that point in the code (1 mark).

Possible answer (max 3 marks):

 when the function is called, an argument is passed to it via a parameter
(1 mark). An output is printed within the function but no value is returned
(1 mark) to the print statement that calls it. Therefore, the calling print
statement has no value from the list/array to print (1 mark).

3

09.5 1 mark (max 1 mark) for:

 Change Line 04 to return, ie: return(months[month])

 Remove the command print from Line 06 and Line 07.

A. Equivalent syntax in other languages.
A. Remove [month] from Line 04

1

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

7

Question Guidance Mark

10.1 1 mark for:

 (double) array

 lists/tuples (Python)

 hash table

 dictionary

 record

 struct / structure

 DataTable (class).

A. String (eg CSV file could be stored in a string).

1

10.2 1 mark (max 2 marks) for each example, eg:

 the storage of data as objects

 object-oriented programming such class for storing information about a
property in an entity in a table

 databases

 spreadsheets

 specific examples of tabular data, eg CSV file, SQL server tables

 metadata tables

 repository tables

 action tables

 practical example, eg programming scenario requiring data tables, storing
number of days in each month of the year, multiple user/customer inputs.

2

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

8

Question Guidance Mark

11 1 mark (max 2 marks) for each point, eg:

 a pointer is a programming language object

 whose value refers to/references another value // stores the memory address
of another value

 stored elsewhere in computer memory

 using its memory address
 usually used to allow the data stored at that memory location to be accessed

 stores the location of another value

 in a linked list, a pointer points to the next member of the list

 The ReadLine method reads each line of text, and increments the file pointer

to the next line as it reads.

2

12.1 1 mark for:

 num

A. n2

1

12.2 1 mark for:

 Lines 01, 02, 03

 Lines 06, 08, 10.

A. 1 mark for any 3 of the above.
A. Lines written out as code.
A. 06, 08 without the 10 (variable is not defined as per Question 12.3)

2

12.3 1 mark for:

 Line 10
1 mark for:

 num = n3

R. n3 // change to n3

2

12.4 1 mark for:

 8.
1

12.5 1 mark for:

 Line 07.

A. elif (n2 >= n1) and (n2 <= n3)

A. Line 10 // num= n4 if this has not been given as the answer to Question 12.3.

1

12.6 1 mark for changing sign, ie:

 n2 >= n3

A. num = n3 if Line 10 has been awarded the mark in Question 12.5.

1

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

9

Question Guidance Mark

13.1 1 mark (max 3 marks) for each point or expansion, eg:

 technical processes not understood by client

 client cannot visualise interface design

 flowchart too complicated

 difficult for client to feedback

 may be difficult/costly/time-consuming to make/modify
 a counterpoint about storyboarding.

3

13.2 1 mark (max 3 marks) for each point, eg:

 to break down/functionally decompose a problem into more manageable
components/key processes // simple representation helps visualisation // parts
can be worked on one at a time

 to present the structure of a concept that has multiple pages or components

 explain architecture concepts to clients/developers

 to get a better understanding of a program/data structure

 a blueprint or template when developing // to have a clear idea of the order to
code parts of a project

 as a resource when debugging

 as part of Unified Modelling Language/UML

 this can be useful for large/complex projects

 to create smaller tasks for groups/individuals // separate divisions within
development team

 class hierarchy, eg in object-oriented programming to show relationship
between parent/class etc

 for describing program behaviour, eg sequence, selection, iteration

 appropriate drawing (explain points and/or example)
 worked examples.

A. representing the hierarchy of employees within a company.
R. diagram if nothing added to written explanation (or vice versa).

3

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

10

Question Guidance Mark

14 Mark using the indicative content and levels of response table below.

Indicative content:

Model Advantages Disadvantages

Waterfall

 A linear model / step-by-
step design

 Each phase must be
completed (or repeated)
before the next can begin

 Cannot return to a
previous phase unlike
spiral

 Used for small/medium
projects with clearly
defined requirements
from outset, spiral can
handle large projects

 Loops “Requirements >
Analysis > Design >
Coding > Integration >
Testing > Acceptance >
Maintenance”

 Both waterfall and spiral
have planning in the
early stages

 Resource planning done
before each phase

 Testing after coding phase

 Simple to
understand and
use

 Easy to manage –
each phase has
specific
deliverables and
review process

 Phases
processed/
completed one at
a time/do not
overlap

 Works well for
smaller projects
where
requirements are
well understood

 Easier to
maintain than
with spiral

 Scope needs to
be clear and
detailed from the
outset

 Working software
not given to client
until late in the
SDLC

 Difficulty of
managing team
resources
effectively

 Difficult
/expensive to
change client
requirements
later/or in testing
phase, whereas
spiral is more
flexible to
change

 High level of risk
and uncertainty
because lack of
risk
management
compared to
spiral

6

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

11

Spiral

 Linear/iterative model
 Combination of waterfall

and prototype models
 Medium - high-risk projects
 Realistic model

compared to waterfall as
changes can be made at
any point

 Client control / kept up-

to-date ∴ more likely to

have needs addressed;

waterfall: client only

involved at the beginning

 Easier to change the

design/revisit different

phases than waterfall

 Determine
objectives/constraints;
evaluate/identify and
resolve risks; develop and
test; plan the next iteration

 Multiple prototypes
 Iteration over steps until

customer satisfied with
refined prototype

 Testing after engineering
phase

 Repeats/spirals “Planning
> Risk analysis >
Engineering > Coding and
implementation >
Evaluation”

 High amount of
risk analysis

 Good for higher
risk projects

 Good for
development of
large and mission-
critical projects

 Additional
functionality can
be added later

 Useful when
significant
changes are
expected
(research and
exploration), eg
new product line

 Working
software
produced early in
SDLC at the end
of each iteration,
compared to end
of lifecycle with
waterfall

 Requirements are
complex

 Can be
expensive
compared to
waterfall

 Completed
phases cannot be
revisited easily

 Users can be
unsure of needs

 Little scope for
backtracking/
revision

 Needs expert for
close risk
assessment

 Client may have
to spend a lot of
time with
development
team

 Waterfall has

clear

documentation

of whole

process, spiral

less and more

difficult to track

 Difficult to fix the
start/end of phase

 Difficult to commit
long-term, eg
potential changes
to economic
priorities.

Level Descriptor Marks

3 Clear comparison of both models. 5-6

2
Some understanding/comparison of both models or
clear understanding of one model.

3-4

1
General understanding of one or both models is
shown.

1-2

 No creditworthy response 0

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

12

Question Guidance Mark

15 1 mark (max 3 marks) for each way, 1 mark for each expansion point, eg:

 clear communications and training of staff/end-users

 clear technical documentation

 appropriate user documentation

 clear requirements from the outset

 availability of developers in case of need to issue bug fixes

 regular consultation during development

 operational handover/training

 testing prior to deployment

 tested/prepared for environment it is to be installed in (capacity, etc)

 software installed and configured properly to begin with

 follow good coding practice in coding phase, eg commenting

 choosing an appropriate release window to allow for issues

 regular updates

 maintaining safe environment, eg virus checking

 understanding/agreement of servicing requirements
 logs of issues / feedback / automated error reporting
 agreement to extend the lifecycle of the software product.

A. 2 marks for a clear way/description, 1 mark for a partial way/description or one
which lacks clarity.
A. If candidate has identified more than three ways, credit the best three.

6

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

13

Question Guidance Mark

16.1 1 mark (max 2 marks) for each point or expansion point, eg:

 to collect/document requirements of a system from client, users and other
stakeholders

 to fully understand what a project will deliver

 so developers know what the client wants from the product

 problems of scope/understanding/volatility.

2

16.2 1 mark for each way, 1 mark for an expansion point, eg:

 carry out research

 visualisation

 clarity of scope

 consistency of language

 following organisational guidelines

 use of templates

 documenting dependencies

 analysis of changes

 user involvement/sign-off of documented requirements (1 mark) to ensure the
product will deliver what users expect

 client sign-off

 make use of staff (eg business analyst) (1 mark) skilled in
obtaining/documenting requirements (1 mark)

 an example of poor quality (1 mark) and a way to improve this (1 mark).

4

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

14

Question Guidance Mark

17 Indicative content:

 responsive web design, eg media queries, platform, screen sizes/resolutions,
font sizes

 ensure UI elements appropriate/usable on touch UI, eg consider mouse-
specific elements like mouseover

 consistent features between versions / familiarity

 don’t hide features/content on mobile

 consider areas/elements in site that might need to be more front and centre on
phone version, eg restaurant site might prioritise mobile
payment/menu/booking

 use of libraries, eg CSS, bootstrap

 compatibility issues

 design for mobile then scale things up, eg size of links

 don’t clutter the design/consider speed of loading

 user testing

 test the mobile site, and test changes haven’t affected original site

 research, storyboarding, etc

 remove advertisements, reduce size of images etc (mobile data/speed)

 stop videos auto-playing

 general principles of good programming practice from specification, eg
familiarity.

Level Descriptor Marks

3
A range discussed with clear understanding,
focused on the scenario and relevant to the user,
including things to avoid doing.

7-9

2
A range discussed with some understanding, mostly
focused on the scenario and relevant to the user.

4-6

1
Makes general points, for example lists principles of
good programming practice.

1-3

 No creditworthy response 0

9

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

15

Question Guidance Mark

18.1 Indicative content:

 logic implied by The Rules and layout of the maze

 variables or object types, declarations/assignment.

 reading/verifying movement inputs and outputs to screen, eg player position,
numbers on grid

 sequence of actions

 checking ahead, eg for black squares, edges of grid and resultant effect on
player position

 decisions/processes, eg keeping score, removing from grid (eg manipulating
arrays/variables)

 constructs

 functions

 loops/termination, eg keeping the game running/checking for input until all the
numbers are picked.

Level Descriptor Marks

3

Explains a range of features and techniques
required; examples are relevant and show
understanding of the logic needed to program the
game.

7-9

2

Describes some features and techniques required;
most of the examples are relevant and show some
understanding of the logic required to program the
game.

4-6

1
Lists some features and techniques or derives some
logical statements from the problem.

1-3

 No creditworthy response 0

9

18.2 1 mark for each point or expansion point, eg:

 expand arrays to accommodate a second player, points, lives, etc

 the logic/AI of the computer player, eg random moves, reactions, does it learn,
does it attack?

 whether player/computer can occupy the same space/cross over and
consequences

 whether player/computer play at the same time

 logic to compare player and computer scores at the end of the game and
declare winner.

6

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

16

Assessment Outcomes

Question AO1 AO2 AO3 AO4
Question

Total

Section A

01 3a (1) 1

02 1b (1) 1

03 3a (1) 1

04 3d (1) 1

05 3c (1) 1

06.1 1a (2) 2

06.2 1a (1) 1

07.1 1c (1) 1

07.2 1c (1) 1

08.1 2f (1) 1

08.2 2f (1) 1

09.1 3a (1) 1

09.2 3a (1) 1

09.3 3a (1) 1

09.4 3e (3) 3

09.5 3e (1) 1

10.1 2g (1) 1

10.2 2g (2) 2

11 3a (2) 2

12.1 3c (1) 1

12.2 3a (2) 2

12.3 3d (2) 2

12.4 3e (1) 1

MARK SCHEME – LEVEL 3 TECHNICAL LEVEL IT –F/507/6465–JUNE 2018

17

12.5 3e (1) 1

12.6 3e (1) 1

13.1 2f (1) 4a (2) 3

13.2 2d (3) 3

14 2b (6) 6

15 2a (6) 6

Section B

16.1 2a (2) 2

16.2 2a (4) 4

17 4a (9) 9

18.1 2d (9) 9

18.2 3e (6) 6

Totals 6 36 27 11 80

