

Level 3 Technical Level IT

COMPUTER PROGRAMMING

Mark scheme

Unit Number: F/507/6465 and R/506/6118 (2015)
Series: June 2017

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the

relevant questions, by a panel of subject teachers. This mark scheme includes any amendments

made at the standardisation events which all associates participate in and is the scheme which was

used by them in this examination. The standardisation process ensures that the mark scheme

covers the students’ responses to questions and that every associate understands and applies it in

the same correct way. As preparation for standardisation each associate analyses a number of

students’ scripts: alternative answers not already covered by the mark scheme are discussed and

legislated for. If, after the standardisation process, associates encounter unusual answers which

have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and

expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark

schemes on the basis of one year’s document should be avoided; whilst the guiding principles of

assessment remain constant, details will change, depending on the content of a particular

examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2017 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this
booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any
material that is acknowledged to a third party even for internal use within the centre.

MARK SCHEME LEVEL 3 COMPUTER PROGRAMMING F/507/6465 and R/506/6118 JUNE 2017

 3 of 21

MARKING METHODS

In fairness to candidates, all examiners must use the same marking methods. The following advice

may seem obvious, but all examiners must follow it as closely as possible.

1 If you have any doubt about how to allocate marks to an answer, consult your Team Leader.

2 Refer constantly to the mark scheme and standardising scripts throughout the marking period.

3 Use the full range of marks. Don't hesitate to give full marks when the answer merits them.

4 The key to good and fair marking is consistency.

INTRODUCTION

The information provided for each question is intended to be a guide to the kind of answers

anticipated and is neither exhaustive nor prescriptive.

All appropriate responses should be given credit.

Where literary or linguistic terms appear in the Mark Scheme, they do so generally for the sake of

brevity. Knowledge of such terms, other than those given in the specification, is not required.

However, when determining the level of response for a particular answer, examiners should take

into ·account any instances where the candidate uses these terms effectively to aid the clarity and

precision of the argument.

DESCRIPTIONS OF LEVELS OF RESPONSE

The following procedure must be adopted in marking by levels of response:

• read the answer as a whole

• work up through the descriptors to find the one which best fits

• where there is more than one mark available in a level, determine the mark from the mark range

judging whether the answer is nearer to the level above or to the one below.

Since answers will rarely match a descriptor in all respects, examiners must allow good

performance in some aspects to compensate for shortcomings in other respects. Consequently, the

level is determined by the 'best fit' rather than requiring every element of the descriptor to be

matched. Examiners should aim to use the full range of levels and marks, taking into account the

standard that can reasonably be expected of candidates.

Key

DNA = Do not allow

Where candidates have used diagrams to clarify their answers, examiners should consider diagrams

and written statements equally in applying the mark scheme.

 5 of 21

Section A

1. B

[AO1c, 1 mark]

2. D

[AO1a, 1 mark]

3. A

[AO1a, 1 mark]

4. A

[AO3a, 1 mark]

5. D

[AO3c, 1 mark]

6. Backtracking is a general algorithmic technique.

Explain how a backtracking algorithm works.

[AO3c, 3 marks]

1 mark for each point, eg

 Considers searching every possible combination to solve an optimization
problem

 Inserts knowledge into problem (1 mark) so search tree can be pruned (1 mark)

 View picking a solution as a sequence of choices

 Incrementally builds candidates to the solutions

 For each choice, consider every option recursively

 Attempts to solve sub-problems (1 mark) values already found ignored (1 mark)

 Returns the best solution found

 Admits the concept of a "partial candidate solution"

 Technical explanations or examples

 DNA: Backtracking = debugging

Example of a technical explanation (max. 3 marks):

Used to solve problems (0 marks). Starts with a possible move and then tries to

perform next move. (1 mark) If next move works then this continues recursively until

ultimate success (1 mark), but if it fails then the algorithm backtracks one step and

tries a different move. (1 mark) In this way, all paths will be tried until the answer is

found or all paths are exhausted. (1 mark)

7. Table 1 identifies two types of programming language.

Using the list below, place each characteristic in its correct position in Table 1.

 [AO1a, 3 marks]

Characteristic:

 Source code

 Object code

 Mnemonics

 Abstraction

6

 6 of 21

Table 1

Type of language Characteristics

Low-level Object code

(1 mark)

Mnemonics (1 mark)

High-level
Source

code
Abstraction (1 mark)

1 mark for object/source code the correct way around

1 mark for mnemonics (low-level)

1 mark for abstraction (high-level)

Allow: 1 mark for a table completed with four accurate characteristics (ie not using the

list provided).

8. This question is about the modular development approach.

8.1 Identify two advantages of the modular development approach.

[AO2a, 2 mark]

1 mark (max. 1 mark) for advantage, eg

 Reuse of code, eg can be called when needed or not at all

 Scoping of variables is easier

 Standardised approach, eg allows many programmers to collaborate on different
parts of the project

 Team can focus on modules specific to their expertise

 Thoroughness/frequency of testing

 Can be used in other programs, eg libraries

 Organisation of code/tasks, eg easier to break down problem/test, add/amend
features, shorter/tidier code, code separated into modules

 Errors are localised/can be easily identified

8.2 What should be considered to prevent problems occurring during development?

[AO2a, 2 marks]

1 mark (max. 2 marks) for each consideration, eg

 Thorough documentation of modules/readability of code

 Agree approach across all teams, eg naming conventions, deadlines/durations,
regular testing/debugging, appropriate number of people, efficient organisation of
code, central point of maintenance, time scales

 Splitting into/importing individual files (ease of navigation, management of code,
etc)

 Risk assessment/planning, eg difficulty of task/anticipate problems, final outcome

 Technical debt

 Client instructions from client, understanding of the requirements/future uses of
modules

OR

1 mark for a consideration, with 1 mark for an expansion point

7

 7 of 21

9. Software design or development lifecycle is a process used to design high quality
software.

9.1 Describe what is meant by ‘closed beta’ testing.

[AO3d, 1 mark]

1 mark (max. 1 mark) for a definition, eg

 Closed beta tests are filtered / restricted / by invitation only, eg to developers,
registered customer base, etc

 Testing which is limited for a purpose, eg to prevent reputational damage.

9.2 Name two phases of the software design lifecycle that come after implementation or

coding.
[AO2a, 2 marks]

1 mark (max. 2 marks) for each phase, ie

 Testing, allow: Pre-alpha, Alpha, Beta, RC, RTM, GA

 Deployment/installation, allow: selling, release

 Documenting

 Maintenance/service

 Review/evaluation

 Execution

 Conclusion

 Closure

10. A local garage has asked you to create a navigation structure for its web page.

Arrange the following pages so a user could navigate easily around the website.

 Home

 Order history

 Book a repair

 Book an MOT

 Change my booking

 About us

 Contact us

 Customer accounts

 Our services

 Our history

 Our awards
[AO2f, 1 marks; AO4a, 2 marks]

Indicative content:

 Home

 About us > Our history > Our awards

 Our services > Book a repair > Book an MOT

 Customer accounts > Change my booking > Booking history

 Contact us

8

 8 of 21

 Home > Book a repair > Book an MOT

 About us > Our history > Our awards > Our services

 Customer accounts > Change my booking > Booking history

 Contact us

Q10 Descriptor Marks

The pages are grouped with clear logic to the

navigation structure that would be clear to the client;

all pages are included

3

The pages are grouped with some logic to the

navigation structure which would be reasonably clear

to the client; maybe one or two pages are missing.

2

The pages are grouped but the navigation structure is

limited either by logic or presentation
1

No creditworthy response 0

11. You buy components to build and test a new computer for delivery to a client.

Draw a structure diagram which illustrates this process.

 [AO2d, 3 marks]

1 mark for a structure diagram with two levels (or other simple representation) which

broadly reflects the process
1 mark for the outcome (eg deliver, sell, install)

1 mark for all three processes (or other implied, eg search for components, ‘take

delivery’ instead of ‘buy components’)

Indicative content:

Allow other valid approaches/diagram, including flowcharts (consider whether the

flowchart is a simple representation).

12. Explain why developers might use the Concurrent Versions System (CVS).

[AO3g, 2 marks]

1 mark (max. 2 marks) for each point, OR: 1 mark + 1 mark for an expansion, eg

 to save and retrieve/access previous versions of the source code

 developers share control in a common repository

 to keep track of each developer's work individually

BUILD

COMPUTER

BUY

COMPONENTS

DELIVER COMPUTER TO CLIENT

TEST

COMPUTER

9

 9 of 21

 to reconstruct a version from recorded changes / maintain a single copy

 allow multiple developers to work on separate copies of source code in isolation

 as a production quality system

 if a new build does not function (1 mark) you can rollback to/reconstruct an older
version (1 mark)

13. Pseudocode is an informal language which helps programmers develop algorithms.

Rewrite the following problem as pseudocode:

[AO2e, 3 marks; AO3a, 3 marks]

 Input 50 positive numbers.

 Add up the odd numbers and display the total.

 The program should terminate and display the current total if a negative
number is input at any point.

Indicative content:

01
02
03
04
05
06
07
08
09

total=0
count=1
input number
while (count<=50) and (number>=0)
 if number is odd, add number to total
 increase count by 1
 input number
endwhile
display total

Award up to 3 marks for each of two components.

Allow: total occurrences of odd numbers rather than total of odd numbers.

Q13 Descriptor (first component) Marks

Candidate has included all elements of the

problem
3

Candidate has included most elements of the

problem
2

Candidate has included some elements of the

problem
1

No creditworthy response 0

10

 10 of 21

Q13 Descriptor (second component) Marks

Candidate has constructed a logical, working

solution
3

Some of the solution is logical 2

The pseudocode is limited 1

No creditworthy response 0

14. Programming languages can be used to enhance web page interactivity.

14.1 Name two languages that could be executed directly on a web server.

[AO1c, 2 marks]

1 mark (max. 2 marks) for each language, eg

 VBScript

 Java

 Python

 PHP

 ColdFusion

 Ruby

 C/C++

 (Server-side) JavaScript, HTML

 (Server-side generated) CSS

Allow:

 ASP (scripting environment)

 ASP.NET (framework that would use JScript/C# as the language)

 SQL, DNA: MySQL

14.2 Identify one language that could be used to enhance web page interactivity and, using

examples, explain how this could be done.
[AO1c, 4 marks]

1 mark (max. 1 mark) for a language, eg

 JavaScript

 ActionScript

 jQuery

 PHP

Allow:

 CSS

Award up to 3 marks for the explanation.

Indicative content (two possible example/explanation combinations):

JavaScript (1 mark) can be used to add interactivity to web pages by adding code to

HTML tags (1 mark) such as <button onclick="myFunction()"> (1 mark) which calls an

event when the button is clicked (1 mark).

11

 11 of 21

JavaScript (1 mark) could be used to change the appearance of a page in reaction to

the activity of the user (1 mark), eg disabling submit buttons (1 mark) on a page until all

of the form is completed correctly (1 mark)

Q14.2 Descriptor Marks

Candidate has written an explanation which shows clear

understanding
3

Candidate has written an explanation which shows some

understanding
2

Candidate has written a limited explanation 1

No creditworthy response 0

15. A programmer using a high-level language should write code so that it can be

maintained easily.

15.1 Explain the abstraction principle in terms of good programming practice.

[AO4a, 3 marks]

One definition of abstraction principle:

Each significant piece of functionality in a program should be implemented in just one

place in the source code. Where similar functions are carried out by distinct pieces of

code, it is generally beneficial to combine them into one by abstracting out the varying

parts. (3 marks)

1 mark (max. 3 marks) for each point, eg

 The use of abstractions or libraries reduces duplication (1 mark)

 Functionality should be implemented in just one place / similar functions should
be combined into one (1 mark) using abstraction (1 mark)

 Abstraction reduces complexity/increases efficiency of the program / it is more
efficient to combine functions into one (1 mark)

 Justification in terms of good programming practice (1 mark)

15.2 State three more principles you could follow to make code easier to maintain.

 [AO4a, 3 marks]

1 mark (max. 2 marks) for each principle, eg

 Document code, eg comment lines, ‘readme.txt’

 Avoids unnecessary/duplicate code

 Indent/present code clearly, (allow: CSS, libraries, source files)

 Name variables/functions/objects etc consistently

 Name variable/functions/objects etc sensibly

 Separate code into different folders, eg public/public, include/source

 Specific characteristics, eg encapsulation, inheritance, polymorphism,
decomposition

16 Iterative design is commonly used to develop human computer interfaces.

Explain the typical steps of iterative design when programming user interfaces.

12

 12 of 21

[AO3f, 4 marks; AO4a, 2 marks]

Indicative content:

 Iteration: steady refinement of the design based on testing/evaluation

 A repeated circle of events

 Instead of delivering a final version in a single delivery it would be delivered first
in a rough form, then subject to user feedback and testing

 Part of each iteration would involve studying how intuitive and efficient the
interface is. This cycle would then repeat to refine the previous delivery until a
final accepted and tested design

 Testing/fixing (at each stage instead of at the end)

 Refining based on user testing/feedback to improve usability

 Acquiring quantitative and qualitative feedback, eg to increase productivity while
using the interface

 Assessing interface for ease of learning/use/familiarity

 Debugging the interface

 Steps, eg complete, present/test, note any problems; refine/repeat

 Diagrams which illustrate any of the above

Q16 Descriptor Marks

Candidate has clearly explained iterative design in terms of

user interfaces
5 - 6

Candidate has shown some understanding of iterative design,

and how the steps relate to user interfaces
3 - 4

Candidate has shown limited understanding of iterative design,

but attempted to link this to user interfaces
1 - 2

No creditworthy response 0

13

 13 of 21

Section B

17. You are designing a character for a game. The character must make decisions about

what to do in the 30 minutes from waking up to leaving the house.

Draw a flowchart which:

 Shows waking up to an alarm until leaving the house

 Handles a 5-minute snooze button

 Handles three other decisions required

 Checks important decisions before leaving
[AO2d, 8 marks; AO3a, 4 marks]

Flowchart Symbol Name

Start/end

Input/output

Process

Decision

Indicative flowchart and descriptors on following page. Accept reasonable

alternatives.

14

 14 of 21

Choose the most appropriate band/row on a best fit basis.

Award up to 4 marks in Column 2 (Logical) and up to 8 marks in Column 2 (Accurate).

Q17 Descriptor Implemented
Logic and

Accuracy

3 or 4 bullets carefully implemented;

eg

alarm and snooze button

sensible decisions identified (eg

wash, dress, have breakfast)

important decision identified (eg

am I dressed?)

the processes are logical,

eg

alarm and snooze processes work

5-minute timer; 30-minute count

waking tasks are not performed

while asleep

producing accurate results:

eg

the character gets up

the character does not leave

house without dressing

the character leaves the house

3-4 6-8

3 or 4 bullets implemented;

eg

alarm and snooze button

some sensible decisions

some of the processes are logical,

eg

a snooze button attempted and

processes mostly logical

there is no 5-minute timer

most decisions are in a logical

order

producing mostly accurate results.

2-3 3-5

1 or 2 bullets implemented; some

processes attempted, though with

limited results.

1-2 0-2

No creditworthy response. 0 0

15

 15 of 21

16

 16 of 21

18. Examine the following code.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

pageref=new Array()
var count=0

pageref=['home','default.asp','services','services.asp','price
s','prices.asp','contact','contact.asp','about
us','about.asp']

for (var i=0; i<pageref.length; i+=2) {
 displaypage(i)
}

window.alert(count)
temp+=1

function displaypage(num) {
 var x = filename(num)
 window.alert('the '+pageref[num]+' page has filename '+x)
 switch(num) {
 case 4:
 window.alert('add price list')
 break;
 case 6:
 window.alert('add contact database')
 break;
 }
}

function filename(num) {
 var temp=0
 count+=1
 return pageref[num+1]
}

18.1 The code does not have any annotations to show how it works. The programmer

 has used window.alert() to output messages to the screen to help with debugging.

Write technical comments which explain how the code and program work.

Select five different aspects to comment on. Marks are awarded for:

 selecting different aspects carefully (eg, don’t comment on two window.alert

commands)

 the technical understanding shown

 using clear and concise language.
[AO3a, 8 marks; AO3h, 3 marks]

17

 17 of 21

Choose the most appropriate band/row on a best fit basis.

Award up to 3 marks in Column 2 (Selection) and up to 5 marks in Column 2

(Explanation/Understanding).

Descriptor Selection
Explanation/

Understanding

5 aspects of code judiciously selected,

with appropriate explanation
3 3–5

3–4 aspects of code carefully selected;

there is some appropriate explanation of

the choices made, OR

5 or more aspects of code selected; there

are some appropriate observations about

the choices made

2 2–4

1–2 aspects selected with some

understanding of the code, OR

3 or more aspects selected; there is

limited understanding of the code

1 0-2

No creditworthy response 0 0

Further, award up to 3 marks for the appropriateness of the language:

Descriptor Language

Most of the language is clear 3

Some of the language is clear. 2

Little thought has been given to the clarity

of the language
1

No creditworthy response 0

18.2 There is an exception error in the code. Give the number of the line where it occurs

 and explain why it happens.

[AO3e, 3 marks]

1 mark for

 Line 13

1 mark (max. 2 marks) for reasons, eg variable temp

 has not been defined

 has not been initialised (1 mark) so it cannot be incremented (1 mark)

 has not been assigned a value

 is local when it needs to be global

18

 18 of 21

 should be defined outside the function / has been defined inside the function

Allow: 1 mark (max. 1 mark) if candidate does not identify exception error but identifies
another ‘error’ (even if non-exception), eg a potential difference in syntax or outcomes
which might be applicable in some situations/languages (optional semi-colons,
differences in command verbs/or absence of, by calling a value outside of the
dimensions of the array, etc).

18.3 Apart from window.alert(), describe two other techniques you could use to test

 and debug the code.

[AO3d, 4 marks]

1 mark (max. 2 marks) for each technique, eg

 write output to a log file

 breakpoints

 watching expressions

 trace tables

 use a debugger and step through code

 reference to specific solutions in relation to code

DNA

 actual vs expected results (without window.alert then there would be no results

in this example to compare)

1 mark (max. 2 marks), for either of

 an expansion point on each of the above techniques

 two expansion points on one of the above techniques

19

 19 of 21

Question Assessment Outcomes (2015) TOTAL

 1 2 3 4

SECTION A

1 1c (1) 1

2 1a (1) 1

3 1a (1) 1

4 3a (1) 1

5

3c (1) 1

6 3c (3) 3

7 1a (3) 3

8.1 2a (2) 2

8.2 2a (2) 2

9.1 3d (1) 1

9.2 2a (2) 2

10 2f (1) 4a (2) 3

11 2d (3) 3

12 3g (2) 2

13 2e (3) 3a (3) 6

14.1 1c (2) 2

14.2 1c (4) 4

15.1 4a (3) 3

15.2 4a (3) 3

16 3f (4) 4a (2) 6

Total A 12 13 15 10 50

SECTION B

17 2d (8) 3a (4) 12

18
3a (8),
3h (3)

 11

18.2 3e (3) 3

18.3 3d (4) 4

Total B 0 8 22 0 30

Total
A+B

12 21 37 10 80

20

 20 of 21

Question Assessment Outcomes (2016) TOTAL

 1 2 3 4

SECTION A

1 1c (1) 1

2 1a (1) 1

3 1a (1) 1

4 3a (1) 1

5 2c (1) 1

6 3c (3) 3

7 1a (3) 3

8.1 2a (2) 2

8.2 2a (2) 2

9.1 3d (1) 1

9.2 2a (2) 2

10 2f (1) 4a (2) 3

11 2d (3) 3

12 3g (2) 2

13 2e (3) 3a (3) 6

14.1 1c (2) 2

14.2 1c (4) 4

15.1 4a (3) 3

15.2 4a (3) 3

16 3f (4) 4a (2) 6

Total A 12 13 15 10 50

SECTION B

17 2d (8) 3a (4) 12

18
3a (8),
3h (3)

 11

18.2 3e (3) 3

18.3 3d (4) 4

Total B 0 8 22 0 30

Total
A+B

12 21 37 10 80

21

 21 of 21

Assessment Outcomes

Marks available in

section A

Marks available in

section B

Total Marks

AO1: Understand the different

types of computer programming,

languages and the common uses

8–12 marks

10–15%

2 × 15

37.5%

12

AO2: Analyse the tools and

techniques for planning, design

and development

12–15 marks

15–19%

21

AO3: Evaluate the key features

and techniques used in computer

programming

12–15 marks

15–19%

37

AO4: Demonstrate the principles

of good program practice and

user interface design

8–12 marks

10–15%

10

Total marks

50 marks

30 marks

80

