

Level 3 Technical Level DESIGN ENGINEERING MECHATRONIC ENGINEERING

Unit 1 Materials technology and science

Formula sheet

A 6	I December 1
Area of a circle	Density
$A=\pi r^2 ext{ or } A=rac{\pi D^2}{4}$	$\rho = \frac{m}{V}$
Stress	Strain
$\sigma = \frac{F}{A}$	$\varepsilon = \frac{\delta L}{L}$
Angular measure	Newton's second law
$360^{\circ} \equiv 2\pi \text{ radians}$	F = ma
Trigonometry	Young's Modulus
$\sin = \frac{opp}{hyp}$, $\cos = \frac{adj}{hyp}$ and $\tan = \frac{opp}{adj}$	$E = \frac{\sigma}{\varepsilon}$
Ohm's Law	Electrical power
V = IR	$P = VI$, $P = I^2R$ and $P = \frac{V^2}{R}$
Resistance in series	Resistance in parallel
$R_{total} = R_1 + R_2 + R_3 \dots$	$R_{total} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \dots$
	Two resistors in parallel
	$R_{total} = \frac{R_1 R_2}{R_1 + R_2}$
Straight line graph	Energy
y = mx + c	$PE = mgh$ and $KE = \frac{mv_2}{2}$
Frequency	Boyle's law
$f = \frac{1}{T}$ and $f = \frac{\omega}{2\pi}$	$P_1V_1 = P_2V_2$
Charles' law	The combined gas laws
$\frac{V_1}{T_2} = \frac{V_2}{T_2}$	$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$

The equation of state	The pressure law
$\frac{PV}{T} = mR$	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$
Torque	Gear ratio (2 gears)
T = Fr	$R = \frac{\omega_{in}}{\omega_{out}} = \frac{N_{out}}{N_{in}}$
Friction	Efficiency
$F = \mu N$	$\eta = \frac{ ext{Output}}{ ext{Input}}$ and $\eta_{\%} = \frac{ ext{Output}}{ ext{Input}} imes 100$
Conversion from bar to Pascals	The gravitation constant
$bar \times 101 \times 10^3 N m^{-2}$	$g = 9.81 \ m \ s^{-2}$