

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)	_		_
Candidate signature			

Level 3 Technical Level DESIGN ENGINEERING MECHATRONIC ENGINEERING

Unit 1 Materials Technology and Science

Wednesday 16 January 2019 Afternoon Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- pens
- pencils
- simple drawing instruments
- a scientific calculator (non-programmable)
- the formula sheet, which is provided as an insert inside this paper.

Instructions

- Use black ink or black ball-point pen. Use pencil only for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this answer book. Cross through any work you do not want to be marked.
- Answer to 3 significant figures unless otherwise instructed.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80. There are 50 marks for Section A and 30 marks for Section B.
- Both sections should be attempted.

Advice

- Do not spend too long on one question.
- Read all questions thoroughly before starting your answer.
- Show all working in the spaces provided.

For Examiner's Use	
Question	Mark
1–10	
11	
12	
13	
14	
15	
16	
17	
TOTAL	

		Section A	
		Answer all questions in this	section.
			Total for this section: 50 marks
Tick (✓) the b	ox nex	t to the correct answer for questions 01 to	o 10 .
0 1	What	are the units of compressive strength?	[1 mark
	Α	kg m²	
	В	kg m ⁻³	
	С	$N m^{-2}$	
	D	N m	
0 2	Ident	ify which one of the following is a thermo	osetting polymer. [1 mark]
	Α	Acrylic	
	В	Polycarbonate	
	С	Polyethylene	
	D	Urea formaldehyde	

0 3	Ident	ify which of the following best describes a	dislocation in a metal.	[1 mark]
	Α	A line defect.		
	В	A buckling stress.		
	С	A normalising effect.		
	D	A physical property.		
0 4	Ident	ify the unit of electrical capacitance.		[1 mark]
	A	Ampere		
	В	Farad		
	С	Henry		
	D	Ohm		
		Turn over for the next qu	estion	

0 5	Which class of materials are generally the best heat conductors?	
	A Ceramics	[1 mark]
	B Composites	
	C Metals	
	D Polymers	
0 6	Name the property that is represented by the linear gradient on a stress-	
	A Plastic deformation	[1 mark]
	B Tensile strength	
	C Yield point	
	D Young's modulus	
0 7	Identify the material that a lathe cutting tool would generally be manufact	
	A High carbon steel	[1 mark]
	B Low carbon steel	
	C Medium carbon steel	
	D Stainless steel	

Do not write

0 8	What effect would annealing have on an alu	uminium alloy?	outside the box
	A Harden it		[1 mark]
	B Strengthen it		
	C Soften it		
	D Normalise it		
0 9	Which of the following is the unit of frequen	cy?	[4 mould]
	A Amplitude		[1 mark]
	B Hertz		
	C Period		
	D Phase		
1 0	What is the unit of gravitational force?		[4 mould]
	A Joule		[1 mark]
	B Kelvin		
	C Newton		
	D Watt		10

1 1. Complete **Table 1** by entering the material class and typical use.

The top row has been completed for you as an example.

[6 marks]

Table 1

Material	Class	Typical use
Brass	Non-ferrous metal	Ornaments, bullet cartridges, bells, plumbing application, door knobs, electrical applications etc.
High impact polystyrene (HIPS)		
Cast iron		
Silicon carbide		

1 1 . 2 Figure 1 shows a wheelbarrow suitable for use by adults.

Figure 1

State **two** materials that Component **A** is commonly manufactured from.

[2 marks]

Material 1			
Material 2			

1 1 . 3	Give two reasons why these materials can be used.	outside the
	[2 marks]	
	Reason 1	
	Reason 2	
		10

Turn over for the next question

1 2 . 1	Explain briefly what is meant by an alkane structure.
	Give an example of one in your answer. [3 marks]
	Explanation
	Example
1 2.2	Explain what is meant by crosslinking in polymers and how it affects the property of the material.
	[7 marks]

10

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

Do not write outside the

1 3.1	Explain the function of an electronic transistor.	[5 marks]

Figure 2

Give the correct terms for the properties of the waveform indicated by ${\bf A},\,{\bf B}$ and ${\bf C}$ on Figure 2

[3 marks]

Point A	
Point B	
Point C	

1 3 Give **two** engineering examples of where sine waveforms can be found.

[2 marks]

Example 2

Example 1

10

Figure 3 shows the cross section of an aircraft's wing in flight.

Figure 3

1 4 . 1	Identify the three phenomena listed in Figure 3
	[3 marks]
	Phenomenon A
	Phenomenon B
	Phenomenon C
1 4.2	Explain what is meant by the stagnation point in a two-dimensional fluid flow system. [2 marks]

Describe how to calculate the efficiency of a simple machine.

[3 marks]	Do not write outside the box

10

1 4.4	Briefly explain what is meant by friction in a mechanical power transmission	system. [2 marks

Turn over for the next question

Turn over ▶

1 4 . 3

Section B

Answer **all** questions in this section.

Total for this section: 30 marks

1 5 An engineer is designing a compressed gas storage cylinder – Figure 4.

The dimensions of the cylinder are:

Diameter = 1.2 m Height = 1.75 m

Figure 4

1 5 . 1 Calculate the volume of the cylinder.

Give your answer to 3 decimal places using the correct engineering units.	[4 marks]

10

1 5.2	The engineer needs to know the mass of air that the cylinder will contain under concerning parameters.			
	Use the characteristic gas equation and the volume calculated in question 15.1 to calculate the mass of air.			
	pV = mRT where:			
	p = 1.25 MPa $R = 287.05 J \text{ kg}^{-1} K^{-1}$ $T = 75 ^{\circ}\text{C}$ m = mass			
	[6 marks]			

Turn over for the next question

1 6 A tie-bar is to be used in a construction project.

This is shown in Figure 5

Figure 5

The following data applies:

Young's Modulus, $E=200~{\rm GNm^{-2}}$ Length = 2.0 m Diameter = 20.0 mm Load, $F=50~000~{\rm N}$ applying tension across the axis of the tie-bar

1 6.1	Calculate the tensile stress in the tie-bar to 3 significant figures.	[5 marks]

	17	
1 6.2	Calculate the extension in the tie-bar in millimetres to 1 decimal place.	[5 marks]
	Turn over for the next question	

10

rks]

	19		
1 7.3	Give five benefits of corrosion protection.	[5 marks]	Do not write outside the box
			10
	END OF QUESTIONS		
	END OF QUESTIONS		

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Copyright information For confidentiality purposes acknowledgements of third-party copyright material are published in a separate booklet, which is available for free download from www.aqa.org.uk after the live examination series. Copyright $\ensuremath{\texttt{@}}$ 2019 AQA and its licensors. All rights reserved.

Do not write outside the