Name	Register No	Class

SINGAPORE PIAGET ACADEMY MEDAN PRELIMINARY EXAMINATION 2008-2009

PAPER 4

Additional Materials: Answer Booklet
1 graph paper
Electronic Calculator

1 hour
SECONDARY FOUR

INSTRUCTIONS TO CANDIDATES

Read these instructions first.

Write your Centre number, candidate number and name on the work you hand in.
Write in dark blue or black pen.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all questions.
Write your answers in the spaces provided on the Question Paper.
You may use a calculator
At the end of the examination, fasten all your work securely together.
The number of marks is given in bracket [] at the end of each question or part question.

Section A (60 marks)
 Answer ALL questions. Write your answers in the spaces provided.

1 A student conducted titration in the lab using sodium hydroxide and hydrochloric acid.
(a) State the two apparatus needed for the reaction.
\qquad and
(b) Write a balanced chemical equation with state symbols for the reaction.
(c)Calculate the number of moles of sodium hydroxide used if the number of moles of hydrochloric acid used is 4.5 moles.
(d)From your answer in part (c), hence calculate the mass of sodium hydroxide used

2 The following set-up is conducted to determine the factors affecting rate of reaction. Small lumps of zinc carbonate were added to hydrochloric acid.

(a) State the use of the cotton wool in the set-up.
(b) Write a balanced chemical equation for the above reaction.
(c) Describe a chemical test for the gas produced.
(d) The time taken for the reaction to complete is 5.13 minutes. The initial mass recorded was 120.7 g and the mass recorded at the end of the experiment was 98.8 g .
(i) Sketch a labelled graph (mass of flask and content vs time) to show the progress of this reaction.
(ii) Suggest two ways to reduce the time taken for the reaction.

3 A student was given a sample of an organic acid, \mathbf{T}, and asked to

- determine its relative molecular mass, and
- suggest its molecular formula.

A sample of the acid was placed in a previously weighed container and reweighed. mass of the container and the acid $=8.25 \mathrm{~g}$
mass of container $=6.74 \mathrm{~g}$
(a) Calculate the mass of the acid used in the experiment.
g
The student transferred the sample to a beaker and added 50.0 cm 3 of $1.00 \mathrm{~mol} / \mathrm{dm} 3$ sodium hydroxide. The contents of the beaker were allowed to react and then transferred to a volumetric flask. The solution was made up to 250 cm 3 with distilled water. This was solution S.

25.0 cm 3 of \mathbf{S} was transferred into a conical flask.
(b) What piece of apparatus was used to measure this volume of \mathbf{S} ?

A few drops of phenolphthalein indicator were added to the conical flask.
$0.100 \mathrm{~mol} / \mathrm{dm} 3$ hydrochloric acid was placed in a burette and added to the solution in the conical flask until an end-point was reached.
Phenolphthalein is colourless in acidic solution and pink in alkaline solution.
(c) What was the colour of the solution in the conical flask

- before the acid was added, \qquad
- at the end-point? \qquad
(d) Use these diagrams to complete the table of results

titration number	1	2	3
final reading/cm			
first reading/cm			

Summary.

Tick (\boldsymbol{V}) the best titration results. Using these results, the average volume of \mathbf{S} was cm3.
(e) The acid T contains two carboxylic acid groups and has the formula HOOCCxHyCOOH where x and y are whole numbers.
(i) Deduce the values of x and y in the formula.[Ar: C, 12; $\mathrm{O}, 16 ; \mathrm{H}, 1]$ x \qquad y [2]
(f) Sulphur dioxide is often detected in a sample of polluted air by reacting it with acidified potassium dichromate(VI). The ionic equation for the reaction is shown below :

$$
3 \mathrm{SO}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{72-}+2 \mathrm{H}_{+} \rightarrow 3 \mathrm{SO}_{42-}+2 \mathrm{Cr}_{3}++\mathrm{H}_{2} \mathrm{O}
$$

i) How does sulphur dioxide enter the air?
ii) What observation will confirm the presence of sulphur dioxide in the air?
\qquad
iii) A solution of $0.100 \mathrm{~mol} / \mathrm{dm}_{3}$ of dichromate(VI) ions was used in the test. Calculate the minimum volume of this solution that will be needed to remove the sulphur dioxide in $3000 \mathrm{dm}_{3}$ of polluted air, which contained 2.40% by volume of sulphur dioxide, measured at room temperature and pressure.

4 Element X forms a chloride XCln which melts at $3 \circ \mathrm{C}$.
a) Suggest with reason
(i) the type of bonding in the chloride of XCl n and
(ii) whether X is a metal or non-metal.
b) In Experiment I, when 0.500 g of the chloride, XCln was reacted with an excess of acidified silver nitrate, 1.19 g of AgCl was formed.
(i) Calculate the number of moles of AgCl formed in Experiment I .
(ii) If all the chloride in AgCl were obtained from XCln , find th number of moles of Cl present in 0.500 g of XCln .
\qquad
c) In Experiment II, another 0.500 g of the chloride, XCln was heated strongly and chlorine gas was given off. The equation of the reaction is as follows:
$\mathrm{XCl}_{n} \rightarrow \mathbf{X C l}{ }_{m}+\mathrm{Cl}_{2}$
When the residue, XClm was treated with an excess of acidified silver nitrate, only 0.714 g of AgCl was precipitated.
(i) Calculate the number of moles of AgCl formed in Experiment II.
\qquad
(ii) If all the Cl in AgCl were obtained from XClm , find the number of moles of Cl present in XClm.
\qquad
d) Using your answer to (b) and (c), calculate the mole ratio of Cl in XCln to XClm .
e) Suggest the group in the Periodic Table to which the element \mathbf{X} belongs.
f) Element X also reacts with oxygen to form an oxide.
(i) Suggest a possible molecular formula (in terms of \mathbf{X} and \mathbf{O}) for the oxide formed.
(ii) Describe the observation when a few drops of phenolphthalein indicator is added to an aqueous solution of the oxide of \boldsymbol{X}.
\qquad

5 Aqueous sodium sulphate can be prepared by titrating dilute sulphuric acid with aqueous sodium hydroxide. The equation for the reation is

$$
\mathrm{H} 2 \mathrm{SO} 4(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na} 2 \mathrm{SO} 4(\mathrm{aq})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{l})
$$

a In the titration, $25.0 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} / \mathrm{dm}^{3}$ sulphuric acid was used.
i) Calculate the number of moles of H 2 SO 4 used in the reaction.
ii) Calculate the number of moles of NaOH used in the reaction.
\qquad
iii) Calculate the volume of $0.5 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide used to neutralize the acid.
\qquad
iv) Calculate the mass, in grams of sodium sulphate produced in the reaction.
\qquad
b) Why this method cannot be used to prepare magnesium sulphate? [relative atomic masses: $\mathrm{Na}=23 ; \mathrm{Cl}=35.3$]

6 In an experiment, 0.65 g of zinc granules and $200 \mathrm{~cm}^{3}$ of $0.2 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid are allowed to react together in a beaker.
a)i) Calculate the number of moles of zinc in 0.65 g and the number of moles of hydrochloric acid in the acid solution.
b) Give the equation with state symbols for the reaction.
c) Explain why the reaction stops and state what is present in the beaker at the end.
d) Give one method of making the reaction in the beaker faster. Explain, in terms of collisions between reating particles, how this method works. [Relative atomic mass of zinc $=65$]
\qquad

