Name	Register No	Class

QUESTION PAPER

SINGAPORE PIAGET ACADEMY MEDAN PRELIMINARY EXAMINATION 2008-2009

SECONDARY FOUR

PAPER 1

1 hour

Additional Materials: Optical Answer Sheet (OAS) Soft clean eraser Soft pencil (type B or HB is recommended)

INSTRUCTIONS TO CANDIDATES

Read these instructions first.

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid. Write your name, Centre number and candidate number and the Answer Sheet in the spaces provided unless this has been done for you.

There are forty questions on this paper. Answer **all** questions. For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record our choice in soft pencil on the separate Answer Sheet.

Read the instructions on the answer sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on the last page.

Section A (40 marks) Answer ALL questions.

1	What is	the	structure	of the	ion	⁹⁰ 28Sr ²⁺ ?
---	---------	-----	-----------	--------	-----	------------------------------------

	protons	protons neutrons			
Α	38	52	36		
в	38	52	38		
с	38	90	36		
D	52	38	36		

- 2 Which statement explains why magnesium oxide has a high melting point?
- A The crystal lattice of magnesium oxide resembles that of diamond.
- **B** The reaction between magnesium and oxygen is very exothermic.
- **C** Magnesium and oxygen atoms are joined together by strong double covalent bonds.
- **D** There is a very strong force of attraction between magnesium ions and oxygen ions.
- **3** Element P has the electronic structure 2,8,6. Element Q has the electronic structure 2,8,8,2. What statement about the compound PQ is probably correct?
- A It will have a low boiling point.
- **B** It will conduct electricity when molten.
- **C** An aqueous solution of the compound will not conduct electricity.
- **D** It will have a macromolecular structure.
- 4 How does a magnesium atom form a bond with an oxygen atom?
- A by giving one pair of electrons to the oxygen atom
- **B** by sharing one pair of electrons, both electrons provided by the magnesium atom
- **C** by sharing two pairs of electrons, both pairs provided by the oxygen atom
- D by sharing two pairs of electrons, each atom donating one pair of electrons
- 5 The formula of talcum powder was given in old textbooks as 3MgO.4SiO2.H2O. This formula is rearranged in modern textbooks as Mg3Si4Ox(OH)y. What are the values of x and y in the modern formula?

	х	У
Α	8	2
В	10	1
С	10	2
D	11	2

6 The element X forms a gaseous molecule X₂. One volume of X₂ combines with one volume of hydrogen to form two volumes of a gaseous hydride.

What is the formula for the hydride of X?

- **A** HX **B** HX₂ **C** H₂X **D** H₂X₂
- 7 For which compounds are the empirical and molecular formulae the same?
- A ethene, H₂C=CH₂
- **B** hydrogen peroxide, H₂O₂
- **C** ethanoic acid, CH₃CO₂H
- **D** ethanol, C₂H₅OH
- **8** The energy diagram for the reaction between sodium hydroxide and hydrochloric acid is shown.

progress of reaction

What can be deduced from the diagram?

- A Heat is needed to start the reaction.
- **B** The products contain less energy than the reactants.
- **C** The reaction is rapid.
- **D** The OH_{-} ions have more energy than the H_{+} ions.
- 9 In which change is the nitrogen reduced?
- A NH₃ to NO B NH₃ to NO₃-

C N₂ to NH₃

D N₃- to N₂

- 10 A sample of 1.00g of a pesticide is analysed for its arsenic content by precipitation of the arsenic as the sulfide, AS₂S₃. If 0.123g of the sulfide is obtained, the percentage by mass of arsenic in the pesticide is
- **A** 3.75%
- **B** 7.50%
- **C** 37.5%
- **D** 75.0%

- 11 A sample of a pure hydrocarbon is burnt in pure oxygen and yields 13.2 g of CO2(g) and 5.40 g of H2O(I).
 The empirical formula of the hydrocarbon is
- A CH
- B CH₂
- **C** CH₃
- D CH4
- 12 A sample of fertiliser was analysed and found to contain 80% by mass of ammonium nitrate (NH4NO3) and 20% by mass of potassium chloride (KCI). The mass of nitrogen in a 1.00 kg packet of the fertiliser is
- **A** 140g
- **B** 175g
- **C** 280g
- **D** 350g
- **13** The element sulphur, S, is in Group VI of the Periodic Table. Which formula is incorrect?

Α	S2-	В	S2O3	С	SO ₂₋₄	D	SO₃

14 Which graph shows the number of electrons in the outer shell of an atom, plotted against the proton (atomic) number for the first ten elements in the Periodic Table?

- **15** Which cation, on reaction with aqueous sodium hydroxide, forms a precipitate that dissolves in excess sodium hydroxide?
- A Ca2+ B Cu2+ C Fe3+ D Zn2+

16 Rubidium is in Group I of the Periodic Table.

What are properties of rubidium chloride?

	formula	approximate melting point/°C	solubility in water		
Α	RbC1	70	insoluble		
в	RbC1	700	soluble		
С	RbC1₂	70	soluble		
D	RbC1₂	700	insoluble		

17 From your knowledge of the manufacture of both aluminium and iron, what is the order of chemical reactivity of aluminium, carbon and iron towards oxygen?

	most reactive least reactive						
Α	aluminium	carbon	iron				
в	aluminium	iron	carbon				
с	carbon	aluminium	iron				
D	carbon	iron	aluminium				

- **18** Dilute sulphuric acid is electrolysed using inert electrodes. Which equation represents the reaction at the anode (+ve)?
- **A** $O_{2-2} \rightarrow O_2 + 2e_-$
- $\textbf{B} \quad 2H_{+} + 2e_{-} \rightarrow H_{2}$
- **C** $40H_{-} \rightarrow O_2 + 2H_2O + 4e_{-}$
- **D** SO₂₋₄ \rightarrow O₂ + SO₂ + 2e₋
- 19 In a titration, 25.0 cm³ barium hydroxide solution reacted with 20.0 cm³ of 0.1 mol/dm³ hydrochloric acid. The equation for the reaction is: Ba(OH)2(aq) + 2HCl(aq) → BaCl2(aq) + 2H2O(I) What was the concentration of the barium hydroxide?
- **A** 0.04 mol/dm³
- **B** 0.08 mol/dm³
- **C** 0.125 mol/dm³
- **D** 0.25 mol/dm³

20 The apparatus was set up as shown.

For which pair of metals would electrons flow in the direction shown?

	metal X	metal Y
Α	copper	zinc
в	iron	aluminium
с	iron	magnesium
D	zinc	silver

- 21 Which series of changes includes both oxidation and reduction?
- $\textbf{A} \ C \rightarrow CO \rightarrow CO_2$
- $\textbf{B} \ PbO_2 \!\rightarrow PbO \rightarrow Pb$
- $\boldsymbol{\mathsf{C}} \hspace{0.1cm} N_2 \!\rightarrow\! NH_3 \!\rightarrow\! NO$
- $\textbf{D} \quad C_2H_2 \rightarrow C_2H_4 \rightarrow C_2H_6$
- 22 Which oxide reacts with an alkali to form a salt, but does <u>not</u> react with an acid to form a salt?
- A aluminium oxide
- **B** copper (II) oxide
- **C** sulphur dioxide
- **D** zinc oxide

23 The oxidation number of Cl in HClO4 is

A +7 B +5 C +3 D

24 Which one of the following does not react with dilute hydrochloric acid?

- A magnesium sulphate
- B magnesium hydroxide
- C magnesium oxide
- D magnesium metal

- **25** The following equations represent reactions of dilute sulphuric acid. Which reaction is not 'typical' of a dilute acid?
- A $2KOH(aq) + H_2SO_4(aq) \rightarrow K_2SO_4(aq) + 2H_2O(I)$
- $\textbf{B} \ CuO(s) + H_2SO4(aq) \rightarrow CuSO4(aq) + H_2O(l)$
- **C** $Pb(NO_3)2(aq) + H_2SO_4(aq) \rightarrow PbSO_4(s) + 2HNO_3(aq)$
- **D** $ZnCO_3(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + CO_2(g) + H_2O(I)$
- **26** All ammonium salts on heating with sodium hydroxide produce ammonia gas. From which ammonium salt can the greatest mass of ammonia be obtained?
- A 0.5 mol (NH4)3PO4
- **B** 0.5 mol (NH₄)₂SO₄
- **C** 1.0 mol NH₄Cl
- D 1.0 mol NH4NO3
- 27 X and Y are diatomic elements. X is less reactive than Y.

What are elements X and Y?

	Х	Y
Α	bromine	iodine
в	iodine	bromine
с	potassium	sodium
D	sodium	potassium

28 The equation shows a reaction in the Contact process.

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g) \Delta H = -98 \text{ kJ} / \text{mol}$

Which change would move the position of equilibrium to the left?

- A adding more O2
- **B** increasing the pressure
- **C** increasing the temperature
- \boldsymbol{D} removing SO3 from the reacting mixture

29 Which of the following reactions is a redox reaction?

- A 2NaH₂PO₄(aq) \rightarrow Na₂H₂P₂O₇(aq) + H₂O(I)
- **B** H₂SO₄(aq) + SO₃(g) \rightarrow H₂S₂O₇(aq)
- **C** NH4NO3(s) \rightarrow N2O(g) + 2H2O(g)
- **D** CaO(s) + H₂O(l) \rightarrow Ca(OH)₂(s)

- **30** Which deduction about the element astatine, At, can be made from its position in Group VII?
- A It forms covalent compounds with sodium.
- **B** It is displaced from aqueous potassium astatide, KAt, by chlorine.
- **C** It is a gas.
- **D** It is more reactive than iodine.
- **31** Element Z reacts in the following ways:

 $\begin{array}{l} \mathsf{Z} + 2\mathsf{HCI} \rightarrow \mathsf{ZCI}_2 + \mathsf{H}_2 \\ \mathsf{2Z} + \mathsf{O}_2 \rightarrow \! 2\mathsf{ZO} \end{array}$

 $ZO + H_2 \rightarrow$ no reaction Which of the following could be **Z**?

- **A** aluminium
- **B** copper
- C magnesium
- **D** iron

32 Which reaction does not involve neutralisation?

- A $H_2SO_4(aq) + 2NH_3(aq) \rightarrow (NH_4)_2SO_4(aq)$
- **B** $H_2SO_4(aq) + BaCl_2(aq) \rightarrow BaSO_4(s) + 2HCl(aq)$
- **C** $H_2SO_4(aq) + CuO(s) \rightarrow CuSO_4(aq) + H_2O(l)$
- **D** H₂SO₄(aq) + 2NaOH(aq) \rightarrow Na₂SO₄(aq) + 2H₂O(I)

33 Which substance leaves a black solid when heated?

- A calcium carbonate
- **B** copper(II) carbonate
- **C** potassium carbonate
- D zinc carbonate
- 34 'Cracking' of hydrocarbons breaks them into smaller molecules. Which example of 'cracking' would produce the largest volume of products from one mole of hydrocarbon? Assume that all measurements are made at the same temperature and pressure.
- **A** $C_6H_{14}(g) \rightarrow 3C_2H_4(g) + H_2(g)$
- **B** $C_8H_{18}(g) \rightarrow 2C_3H_8(g) + C_2H_2(g)$
- **C** $C_{10}H_{22}(g) \rightarrow C_8H_{18}(g) + C_2H_4(g)$
- **D** $C_{12}H_{26}(g) \rightarrow C_8H_{18}(g) + 2C_2H_4(g)$
- **35** Propene, C₃H₆, undergoes an addition reaction with bromine, Br2. The molecular formula of the product is C3H6Br2. The semi-structural formula of this product is
- A BrCH₂CH₂CH₂Br
- B CH₃CH₂CHBr
- C CH₃CBr₂CH₃
- D CH₃CHBrCH₂Br

- 36 Compound Q is produced when C₂H₅OH reacts with acidified potassium dichromate (VI). Q reacts with C₂H₅OH to produce an ester. What is the formula of Q?
- **A** CH₃CO₂H **B** CH₃CO₂CH **C** CH₃CH₂CH₂CO₂H **D** CH₃CO₂CH₂CH₃
- **37** Titanium (IV) oxide reacts with sulphuric acid: TiO2 + H2SO4 \rightarrow (TiO)SO4 + H2O In what way is the sulphuric acid behaving in this reaction

A as an acid B as an oxidising agent C as a reducing agent

D as a catalyst

38 Compound X has the molecular formula C₂H₆O.

• X can be made by a fermentation process.

• X can be oxidised to Y.

• X can react with Y to form Z and water.

To which homologous series do X, Y and Z belong?

	x	X Y				
Α	alcohols	carboxylic acids	esters			
в	alcohols	esters	carboxylic acids			
с	carboxylic acids	alcohols	esters			
D	carboxylic acids	esters	alcohols			

39 The diagrams show four structures.

Which structures are isomeric butenes?

A 1 and 2 **B** 2 and 3 **C** 3 and 4 **D** 2 and 4

40 Which reaction will not occur using cold, dilute sulphuric acid?

A formation of copper(II) sulphate from copper(II) oxide

B formation of copper(II) sulphate from copper

C formation of hydrogen from magnesium metal

D formation of carbon dioxide from sodium carbonate

		0	∾ ¥He	10 Ne 10	40 Ar Agen	84 Kr ^{Kryten}	131 Xe Xanon 54	Rn Redon		175 Lu Iutefun	Lr Leeranim	
		NI		о Floring of	35.5 CI Obbine	B Br Browins	127 I Maine 83	At Athen		TT TT Transient	No Itabelun 100	
		١٨		8 00 8	а ¹⁶ ¹⁶ О 18	Se Se ^{Statium}	128 Te bluium	Po Rénim		Tm Tm	Md Madenium 101	
		>		14 Ninogen	31 Phopherus 15	75 As Asonic	122 Sb Mimany	209 Bi Bi		167 Er Erkenn 68	Emilia Temilia	
		N		6 Carbon 6	≊. <mark>12</mark> 8.88	73 Ge Germanium 32	119 Sn 1in	207 Pb 1amd 82		165 Ho Helmium 67	Es Endeinium	(r.t.p.).
				5 Been	27 AL Auninium 13	տ Ga նանատ	115 In Indum 49	204 T <i>L</i> 1hefeer		162 Dy Dy	Cf Cf	bressure
ts						65 Zn 30 ^{Zm}	112 Cd Cotriann 48	201 Hg Mereny 80		159 Tb ^{Tatkum}	Bk Batadum 97	ature and
Elemen						et Cu ^{Capper}	108 Ag Store	107 Au 084		157 Gd Casterium 64	Cm Cm	n tempera
SHEET e of the	dno					N IN IN	106 Pd Patristum 46	195 Pt ^{Phénen}		152 Eu Europium 63	Am Aminian	n ³ at roon
DATA (dic Tabl	Gro					50 Co Codeli	103 Rh Rsáum	taz Ir 77 bidum		samarium Samarium 8	Pu Numin	sis 24 dn
he Perio			+ H Hydrogen			58 Fe	101 Ru Ruthenium 44	190 Os Deriun		Pm Prantium 61	Np Npurium 93	ofan yga
F						55 Mn Merganasa	Tc Tchretium 43	186 Re ^{Rhenian}		144 Nd Noodymian	238 U U 92	one mole
						Cr Cr dramium 24	96 MO MMybdanun 42	184 W 74 74		141 Pr Presodynium 59	Pa Potadirium 91	olume of c
						51 V V 23	93 ND Motion 14	181 Ta Linklen		140 Ce Centum	232 Th Ibriun	The w
						a Ti Timura Timura	gt Zr Zranium	178 Hf ^{Ratrian}			iic mass ol ic) number	
						45 Sc Sandam	8 Y	tso La Lanthanum	az7 Ac ∧ctinim 80 ↑	series eries	reletive atom atomic symt proton (atom	
		=		a Be ^{bryt} tur	24 Mg Mg 12 12	40 Cal	88 Sr Seation	137 Ba Bainn 56	226 Rafin Redain	Actinoid s	- × -	
		_		ر التا الم	Set Na	88 K Reasonim	85 Rb Rb 10444m	133 Cs Cs	Fr Farrinn 87	58-71 Le	ہ (ev	

Question
Number
Key
Question
Number
Кеу
1 Å 21 C
2 D 22 C
3 B 23 A
4 A 24 A
5 A 25 C
6 B 26 A
7 D 27 B
8 B 28 C
9 C 29 C - change in oxidation number -3 n +5 to -1
10 B 30 B
11 B 31 C
11 B 31 C 12 C 32
10 B 30 B 11 B 31 C 12 C 32 13 C 33
11 B 30 B 11 B 31 C 12 C 32 13 C 33 14 C 34 A
10 B 30 B 11 B 31 C 12 C 32 13 C 33 14 C 34 A 15 D 35 A
10 B 30 B 11 B 31 C 12 C 32 13 C 33 14 C 34 A 15 D 35 A 16 B 36 B
10 B 30 B 11 B 31 C 12 C 32 13 C 33 14 C 34 A 15 D 35 A 16 B 36 B 17 A 37 A
10 B 30 B 11 B 31 C 12 C 32 13 C 33 14 C 34 A 15 D 35 A 16 B 36 B 17 A 37 A 18 C 38 A
10 B 30 B 11 B 31 C 12 C 32 13 C 33 14 C 34 A 15 D 35 A 16 B 36 B 17 A 37 A 18 C 38 A 19 A 39 A