Marking Scheme Paper 2 - Sec 4 Chemistry Preliminary 2008-2009 Section A – (Ms Samantha Sow)

A1

(a) iron	(1 mrk)
(b) hydrogen/H2	(1 mrk)
(c) ammonia/NH3	(1 mrk)
(d) aqueous copper(II) sulphate	(1 mrk)

Δ2

R2	
any 2 of the following: (1 mrks, 1/2 m	rk each)
 nanotubes have hexagons (of C atoms) & diamond has tetrahedrally arranged 	atoms
 nanotubes – each carbon bonded to 3 other carbons & diamond – each carbo 	n bonded to 4
others;	
 nanotubes have definite size to molecules OR are tubular & diamond has no finance of the size of the	xed size/no
tubular structure	
 nanotubes have delocalised electrons & diamond has no delocalised electrons 	3
(b) Have strong bonds/have 3-dimensional structure of covalent bonds	(1 mrk)
throughout the structure/giant covalent lattice/giant covalent structure	
(c) (i) graphite	(1 mrk)
(ii) electrons can move/are mobile/are delocalised	(1 mrk)
(d) (i) full outer shell (of electrons)/can't gain or lose electrons (easily)/outer she	ll has 8
electrons/has outer octet of electrons	(1 mrk)
(ii) 20	(1 mrk)
(e) any two other properties of transition metals e.g. (1 mrk for any	[,] properties)
form coloured compounds/variable valencies OR oxidation states/	
form complex ions/high melting or boiling points (either)/high densities	
A3	
(a) Mr ammonium sulphate = 132, and $2N = 28$; % = 100 x 28/132 = 21 or 21 2	(1 mrk)

	(• • • • • • • • • • • • • • • • • • •
% = 100 × 28/132 = 21 or 21.2	
(b) NaOH(aq) + FeSO4(aq)->Fe(OH)2(aq) + Na2SO4(aq)	<u> (1 mrk)</u>
(c)(i) 5Fe2+(aq) + MnO4-(aq) + 8H+(aq) -> 5Fe3+(aq) + Mn2+(aq)	+ 4H2O(I) (1+1 mrk)
(ii) (1)	mrk for any 1 answer)
(substances whose/atoms/ions/its) oxidation number increases/	-
oxidation number becomes more positive/	
oxidation number becomes less negative/	
decreases oxidation number of another substance etc.	
(d) (i) 22.5/1000 × 0.02 = 4.5 × 10–4 (moles KMnO4)	(1 mrk)
(ii) $4.5 \times 10-4 \times 5 = 2.25 \times 10-3$ (moles Fe2+)	(1 mrk)
2.25 × 10–3 × 56 = 0.126 g	(1 mrk)- accuracy)
•	· · · · · · · · · · · · · · · · · · ·

A4 (a)(i)

(1 mrk for any 1 answer)

the bonds between the ions is stronger than the bond between Na+

and Cl- / magnesium ion and oxide ion have 2 positive charges and

negative charges, higher charges on the magnesium and oxide ion,

the bond is strong than sodium ion and chloride ion with 1 positive and negative charge.

(ii) magnesium ion and oxide ion - show the correct charge on the

magnesium ion and oxide ion (ionic bond and electron configuration) magnesium ion shown as 2.8

(1 mrk) oxide ion shown as 2.8 x-magnesium electron, o- oxygen electron (b) 4 (1 mrk) (c) (i) GenH2n+2 (1 mrk) (1 mrk) (ii)

$$\begin{array}{c} H & H \\ H - Ge \\ - Ge \\ - Ge \\ - H \\ H \\ - H$$

= $1.5 \times 10-2$ (mol dm-3) OR any suitable other method e.g. MaVa/n = MbVb/n; M x 20/1 = $0.1 \times 6/2$; $1.5 \times 10-2$ (mol dm-3)

A8

 (i) energy is absorbed in breaking of bonds, energy is released in bond formation, more energy is released than is absorbed/ total energy given out during formation of C=O and O-H bonds is 	
more than total energy absorbed during breaking of C-H or O=O bonds.	
(2 mrk for any comp	lete ans)
(ii) complete combustion of 2 mol of CH4 would release 2 x 890 = 1780 kJ	(1 mrk)
complete combustion of 2 mol of methanol releases 1452 kJ	(1 mrk)
The first experiment would release the most energy.	
(iii) dot and cross diagram in methanol.	(1 mrk)
-show correctly all shared pair of electrons between C-C, C-H and O-H	
-hydrogen has only 2 electrons in its outermost shell	
A9	
(i) (strongest reductant is oxidised at anode) $T_{2}(x) + 2O(1 + (xx)) = T_{2}(x) + 2C$	(1 mrk)
$2\Pi(S) + 2O\Pi - (aq) -> 2\Pi(O\Pi)2(S) + 2e$ -	
(marks given with or without state symbols)	(1
(ii) (strongest oxidant is reduced at cathode) $H_{\pi}O(a) + H_{\pi}O(a)$	(1 1111K)
$\Pi U(S) + \Pi 2U(I) + 2\theta - 2 \Pi U(I) + 20\Pi - (3Q)$ (iii) $T_{P}(S) + U_{P}(S) + U_{P}(S) + U_{P}(S)$	
$(III) Z \Pi(S) + \Pi g U(S) + \Pi Z U(I) -> H g(I) + Z \Pi(U H) Z (S)$	

$(11) \ge 11(3) + 11gO(3) + 112O(1) \Rightarrow 11g(1) + 211(011)2(3)$	(1 mrk)
(v) NaOH(ag) + H3PO4(ag) -> NaH2PO4(ag) + H2O(I)	(1111K)
	(1 mrk)
(vi)Na2H2PO4 ; Na3PO4	

1021121 07, 11001 07		
	(1 mrł	k)

Section B B10

 (a)(i) the rate of reaction increases, frequency of collision increases. (ii) the yield increases the position of the equilibrium shifts ,pressure increases when volume decreases 	(1 mrk) (1 mrk) (1 mrk) (1 mrk)
up the catalyst. b(ii) much larger surface area , more reacting particles are in contact with catalyst.(1 mrk)	(1 mrk)
 (c) no of moles of NO = 720/24 = 30 (mols of NO) 1 mol of NO produces 1 mol of HNO2 30 mols of NO produces 30 mols of HNO3 (1 mrk) mass of nitric acid at r.t.p= 30 x 63 = 1890 g (1 mrk- accuracy) 	(1 mrk)
(d) 4 NH3 (g) + 8O2 (g) -> 4HNO3 (aq)+ 4H2O (l) (1 mrk)	

B11 (a) (i) equation 2 NiS + 3 O2 \rightarrow 2 NiO + 2 SO2 (ii) (59 + 32) kg NiS forms (32 + 32) kg SO2 182 kg NiS forms 182 x 64/91 = 128 kg SO2 OR calculate by moles,	(1 mrk) (1 mrk) (1 mrk)
(b) it is covalent/ the type of bonding is covalent bonds (1mrk) because it has a low b.p. (1 mrk) shows small forces present	
(c) compound and problem both needed (1 mrk) e.g. SO2 causes acid rain or an effect of acid rain CO2 causes greenhouse effect or an effect of warming CO is toxic	
(d) used in hydrogenation of alkenes as a catalyst (1 mrk)	
(e) Ni + Zn(NO3)2 - no reaction (1 mrk) Ni + Cu(NO3)2 -soln changes blue to green and/or pink solid (1 mrk) an ionic equation (1 mrk) Zn (s) + Ni2+(aq) \rightarrow Zn2+ (aq) + Ni (s) Zn (s)+ Cu2+ (aq) \rightarrow Zn2+ (aq)+ Cu(s) Ni (s)+ Cu2+ (aq) \rightarrow Ni2+(aq) + Cu(s) P12	
 any 2 of the following: (1 mrk for each correct ans) same functional hydroxyl, -OH group and each member differs from the next by a CH2 unit have similar chemical properties, reacts with oxygen in the combustion reaction to produce carbon dioxide and water. show a gradual change in their physical properties, they are liquids at room temperature and pressure, solubility decreases as the molecular size increases. the members of the alcohol homologous series have the same general formula, CnH2n+1OH 	
(ii) -2650 KJ/mol (1 mrk)	
(iii) -OH should be attached to the 2nd carbon on the straight chain. H OH H H H - C - C - C - H H H H H (1 mrk)	
 (b) show full structural formula for V, W, X, Y 2 mrks if V, W, X, Y is correct but no structural formula X- ethanoic acid V- water/H2O W-propene/C3H6 Y-dibromopropene (1 mrk each) (b)(ii) a little concentrated sulphuric acid as catalyst/ boil the mixture (1 mrk) (iii) water/H2O (1 mrk) 	

B13 (a) name is butanoic acid (not butenoic) (1 mrk) (b) formula is C5H11CO2H (not C6H12O2) (1 mrk)
(c) structure of ethyl ethanoate (1 mrk) show the full structure of CH3CO2C2H5
(d) allow any suitable named oxidising reagent or formula (1 mrk) e.g. (acidified) potassium dichromate(VI) or air or oxygen
(e) equation (1 mrk) Mg + 2 CH3CO2H \rightarrow Mg(CH3CO2)2 + H2 calculation (2 mrk) 50 cm3 acid is 0.05 mol (5 x 10–2), (moles of CH3COOH) 0.025 (25 x 10–2) mol Mg needed, (moles of Mg) 24 x 0.025 mol = 0.60 g (Molar mass x no. of moles) (answer alone (1), unit needed) (1 mrk accuracy)
(f) ethanoic acid is weak and hydrochloric is strong, (1 mrk) lower [H+] concentration in ethanoic acid (1 mrk)
(g) ionic equation : H+ + OH– \rightarrow H2O (1 mrk)