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This question paper consists of 5 printed pages including this page.

1 A traveller just returned from Germany, France and Spain. The amount that he spent each day on housing, food and incidental expenses in each country are shown in the table below

	Country
	Housing
	Food
	Incidental Expenses

	Germany
	30
	30
	10

	France
	20
	30
	10

	Spain
	20
	20
	10


The traveller’s records of the trip indicate a total of $420 spent for housing, $440 for food and $180 for incidental expenses. Calculate the number of days the traveller spent in each country.









           

He did his account again and the amount spent on food is $400. Is this record correct? Why?
[5]
2 A curve has parametric equations 
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Without the use of graphic calculator, show that the gradient of the tangent at the point where 
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 is 1.  Hence find the equation of normal at the same point.            
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3 Given that y satisfies the differential equation
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(i)
By successive differentiation of this result, show that 
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[3]
       
(ii)
Express y as a series in ascending powers of x up to and including the term in x3.  

[3]
4 Show that 
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5 Find 
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6 Given that 
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 is a root of the quadratic equation 
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 where a and b are real, find the values of a and b.  Mark on an Argand diagram 
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 is on the real axis such that 
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 form a triangle which encloses the origin with an area of 8 square units.  Find 
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7 (i)
Show that 
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(ii)
Find 
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, leaving your answer in the form of 
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where p and q are real.                                                                                                    
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8 A sequence of real numbers 
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(i)
Prove algebraically that, if the sequence converges, then it converges to either 
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 0 or 1.
[2] 

           
(ii)
Use a calculator to determine the behaviour of the sequence for the case
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(iii)
Express 
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(iv)
Given that function 
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[2] 

9 The plane (1 has equation 5x (3y ( 4z = 2 and (2 has equation 2x + y + 5z = 15.

(a)
Find the acute angle, correct to the nearest degree, between the planes. 
           

[3]
(b)
Find the equation of the line passing through A with position vector i ( 2j (3k and parallel to the line of intersection of  (1 and (2.


           



[3]
(c)
Find the foot of the perpendicular from A to (2.



           

[4]
10 The diagram shows a sketch of 
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.  The curve has a vertical asymptote 
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(i) Find the values of  a and b.  Hence obtain the equation of the oblique asymptote.
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(ii) Without the use of graphic calculator, find the coordinates of the maximum point and deduce the set of values of k for which 
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(iii) The curve is translated p units along y-axis where p is positive.  The resulting curve intersects the line 
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11  (a)
By means of the substitution y = vx2, show that the differential equation   
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Hence obtain the general solution of the differential equation
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, expressing y in terms of x.
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(b)
In a laboratory, 1000 biscuits were exposed to particular bacteria that will cause the biscuits to become mouldy. After t days, there were x mouldy biscuits. It is assumed that the rate of increase of the number of mouldy biscuits is proportional to the product of the number of mouldy biscuits and the number of unaffected biscuits at any time t.  Write down a differential equation involving x and t. 

Given that x = 1 when t = 0, show that the solution of the differential equation is 
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 where k is a constant. 




           

[4]
Given also that x = 100 when t = 10. How many more days does it take to have at least 500              
mouldy biscuits?
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12 (a)
Solve the equation
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(b)
Complex numbers 
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Illustrate on an Argand diagram 
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[3]
On the same diagram, sketch the loci

(i)

[image: image75.wmf]1

6

zz

-=

,                                                                                                          
[2]
(ii)
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The complex number w is represented by the point of intersection of the loci in part (i) and (ii).  Find the modulus and the argument of w.
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