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1. 
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 as a series of ascending powers of x, up to and including the term in x6.

(i) State the values of x for which this expansion is valid.

(ii) Obtain, in its simplest form, the term in x2n in this expansion.  
[4]

2.
Find the exact value of   
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3.  
Solve, the inequality  
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.  Hence, by completing the square, solve the inequality
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4.
It is given that 
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(i) Show that 
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(ii) Find Maclaurin’s series for y in ascending powers of x, up to and including the term in x2.
[3]
(iii) By choosing a suitable value for x, deduce the approximate relation 
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,  where k is a constant to be determined.
[2]      

5.
The planes 
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 and 
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, which meet in the line l,  have equations
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respectively. 

(i) Find a vector equation of the line l in the form 
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(ii) 
Plane 
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 intersects 
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 at a unique point. State the z – coordinate of this point of intersection. Give a reason for your answer.
[2]

(iii)
Another plane  
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 is parallel to the normals of 
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.  Explain whether the 3 planes 
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 intersect at a unique point. 
[2]   

6.
If z = i  is a root of the equation 
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, determine the other roots.  
Hence find the roots of the equation  
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7. A capsule made of two similar hemispheres of radius r cm, one at each end of a cylinder, is inscribed into a fixed cone of height 12 cm and base radius 9 cm.  The two figures have a common axis of symmetry and the cross-section is shown below.

(i) 
Show that the height of the cylinder of the capsule, x cm, is related to the radius of the hemisphere through the equation, 
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(ii) Given that, when 
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 is decreasing at a rate of  
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 cms-1, find the rate of change at this instant of the volume of the capsule.    
[4]


[Given: Volume of sphere = 
[image: image28.wmf]3

4

3

r

p

] 

8.
(a) 
Let 
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(i) Find in terms of N, an expression for 
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, where 
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, simplifying your result as far as possible.
 [3]

(ii) Show that 
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for all N ≥ 1.
 [2]


(b) 
Prove by mathematical induction that, for every positive integer n,
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 9. 


A sketch of the curve 
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, where a, b and k are non-zero constants, is shown above.


Explain why a = 4 and k < 0. 
 [2]

Using the given graph, 
(i) sketch the graph of 
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 for all values of x. 
[2]

(ii) determine the number of stationary points of the curve whose equation is 
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10. 
The x-coordinate of the stationary point on the curve
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is denoted by α.  Find the value of α correct to 4 decimal places.
[1]


A sequence of positive real numbers x1, x2, x3, …. satisfies the recurrence relation 

  




[image: image38.wmf]1

1

n

n

x

x

e

+

=

    for  n  ≥  1.

(i) Prove algebraically that if the sequence converges, then it converges to α.
[3]

(ii) Given that x1 < 1, show that 
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 where N is a constant.
[2]

11. 
The function f is defined by 
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,   where  x < -2 and k is a constant.   Find the maximum value of k. 
[2]

Another function g is defined by 
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If   k = 8, 

(i)  
define 
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, the inverse function of f , in a similar form. 
[3]


(ii) 
show that the composite function 
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 exists and find the range of this composite function. 
[4]

12.
The parametric equations of a curve C are 
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(i) Sketch the curve C, showing clearly the asymptotes and the axial intercepts. 
[2]

(ii) Show that the gradient of C at the point where 
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Hence find the area of the triangle bounded by the x-axis, the tangent and normal to C when 
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13.
(a) 
A curve is defined by the parametric equations
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Find the area bounded by the curve, the y-axis and the lines y = 2 and y =10, giving your answer in exact form.      
[6]
(b)
The region R is bounded by the curve 
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 and the line y = 2.  Find the volume of the solid of revolution when R is rotated completely about the y-axis.     
 [4]

14. 
By means of the substitution 
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can be reduced to the form
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[3]


Hence find the general solution of y in terms of x. 
 [3]


Prove algebraically (not verify) that the minimum point of every member of the family of solution curves lie on the y-axis.
 [3]
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