DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION Department for Curriculum Management and eLearning Educational Assessment Unit Annual Examinations for Secondary Schools 2011

PHYSICS

Track Track TIME: 1h 30min

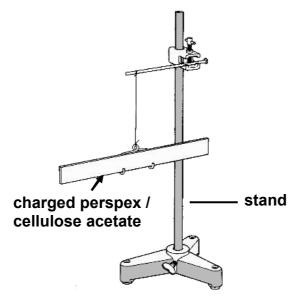
Name: _____

FORM 4

Class: _____

Answer ALL questions in the spaces provided on the Exam Paper. All working must be shown. The use of a calculator is allowed. Where necessary take the acceleration due to gravity, $g = 10 \text{ m/s}^2$.

	W = mg	Average Speed = $\frac{\text{Total Distance}}{\text{Total Time}}$		
Forces &	v = u + at	s = ut + ½ a t ²		
Motion	$s = \frac{(u+v)}{2} t$	v ² = u ² + 2as		
	F = ma	Momentum (p) = mv		
	Q = I t	E = Q V		
Electricity	V = I R	$\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3$		
	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	$R \alpha \frac{1}{A}$ $R \alpha L$		
	$v = f \lambda$	$f = \frac{1}{T}$		
Waves	$m = \frac{v}{u}$	$m = \frac{\text{height of image}}{\text{height of object}}$		
	$\eta = \frac{\text{speed of light in air}}{\text{speed of light in medium}}$	$\eta = \frac{\text{real depth}}{\text{apparent depth}}$		


Number	1	2	3	4	5	6	7	8	Total
Maximum mark	8	8	8	8	8	15	15	15	85
Actual mark									

	Total Theory	Total Practical	Final Mark
Actual Mark			
Maximum Mark	85	15	100

SECTION A

This section carries 40 ma

1.(a) A charged perspex (cellulose acetate) strip is suspended as shown in the diagram.

State what you would observe when:

	Attraction / Repulsion	
another charged perspex strip is brought next to it,		
a charged polythene strip is brought next to it,		
an uncharged perspex strip is brought next to it.		
	[,	3]

(b) A light metal sphere is **repelled** by a **positively** charged object. What charge is present on the sphere?

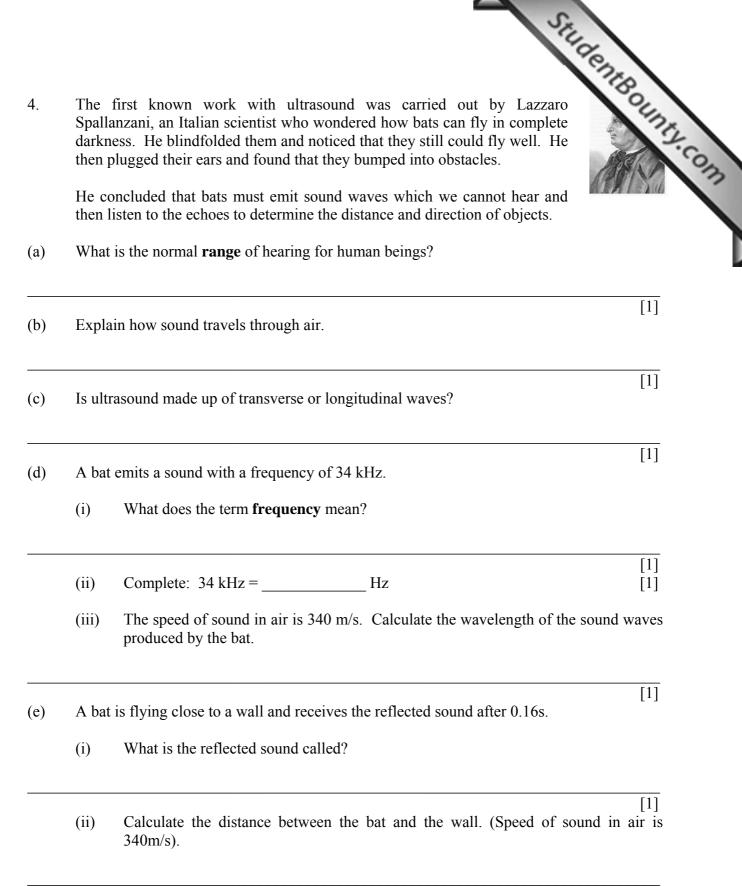
(c)	(i)	How can a perspex strip be charged?	[1]
			[2]

(ii) Explain your answer for c (i) in terms of the movement of electrons.

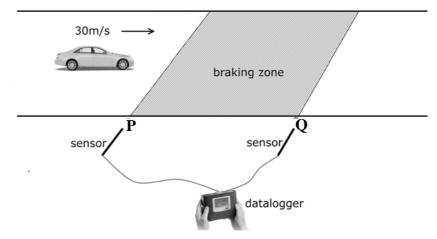
StudentBounty.com Kyle and Nicole stand on roller skates as shown below. Initially they are at rest. 2.

- What is their total momentum **before** they start to push each other? (a)
- [1] The two skaters push each other and move in opposite directions. Calculate the (b) momentum of Nicole, if she has a mass of 45 kg and moves to the right at a velocity of 2m/s.
- Kyle has a mass of 50 kg. Calculate the velocity at which he moves to the left. (c)
- (d) Complete the following: The Principle of Conservation of Momentum states that Why does Kyle move at a lower speed? (e) Kyle and Nicole exert an equal and opposite force on each other. Is this statement correct? (f)

[1]


[1]

[2]


[2]

[1]

3.	below.	ject is placed in front of		ucing an image a	Un
	Object				
	1				
		V		Image	
		Lens			
(a) (b)	-	re diagram by adding the r ram, mark with an ' F ' the		e lens.	[2] [1]
(c)	Give one example	when the above lens arran	ngement is used.		
d)	Use the above diag	gram to calculate the magr	nification of the lens.		[1]
(e)	Name one other pr	operty of the inverted ima	age produced.		[1]
(f)		luced on a screen. What s, assuming everything els		ge if the screen is m	[1] oved
					[1]

5. A test track is set up to test the braking system of cars. Sensors are connected logger which records the speed of a car at points P and Q as shown in diagram below. In one test, the data logger records the speed at P as 30 m/s and the speed at Q as 12 n. The time to move from P to Q is 2 seconds.

(a) Calculate the deceleration of the car.

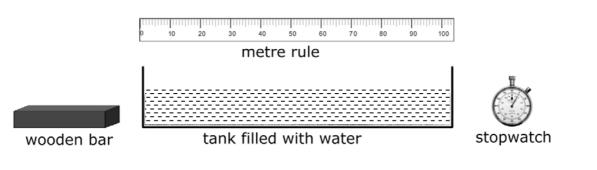
(b) The mass of the car is 1000 kg. Calculate the braking force acting on the car.

- (c) Calculate the length of the braking zone.
- (d) The test is repeated with the same car but now with passengers inside. The speed at P is again 30 m/s. The same braking force is applied to the car as in part (b).
 - (i) Will the **momentum** of the car at P increase, decrease or remain the same?
 - (ii) Will the **deceleration** of the car between P and Q be smaller than, equal to or greater than the one calculated in (a) above? Explain.

[2]

[1]

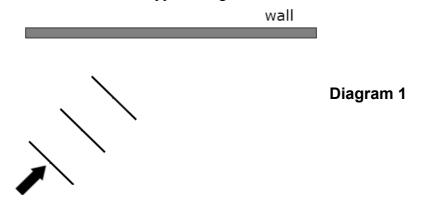
[2]


[1]

[2]

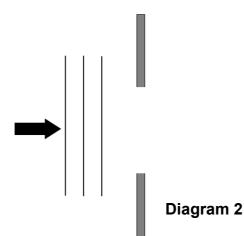
SECTION B

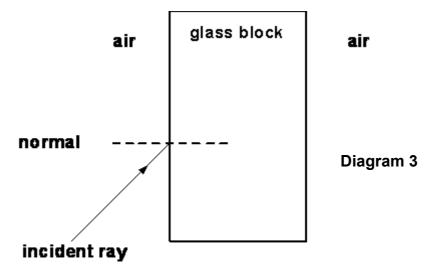
THIS SECTION CARRIES 45 MARKS.


StudentBounty.com In a physics laboratory, a student investigates the average speed of a water wave in a ta 6. (a) The student is provided with a tank filled with water, a wooden bar, a metre rule and a stop watch.

- Explain how the student can use the above apparatus to estimate an average speed (i) of the waves in the tank.
- [3] (ii) The student is told that the depth of the water affects the speed of the wave. How does the depth of the water affect the speed of the water wave?

[1]

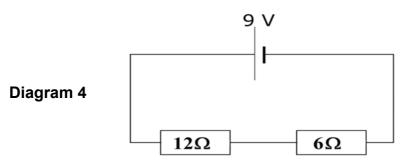

Diagram 1 represents water wavefronts approaching a wall. (b)


- (i) Complete **Diagram 1** to show the path of the reflected wavefronts. [2]
- (ii) On **Diagram 1** above, label the normal, angle of incidence (i) and angle of reflection (r). [3]

www.StudentBounty	.com
 Homework Help & Past 	papers

(c) **Diagram 2** shows water wavefronts approaching a gap.

- (i) Draw the shape of the wavefronts after they travel through the gap. [2]
- (ii) This effect is more visible as the gap is narrowed. Name this effect.
- (d) A ray of light changes direction when it travels from air to glass.

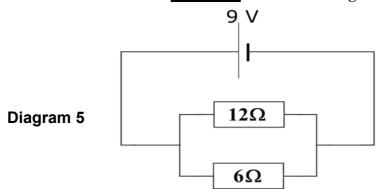


- (i) Draw on **Diagram 3** the path of the ray of light as it passes through and out of the glass block. [2]
- (ii) Name the effect observed.

StudentBounty.com

[1]

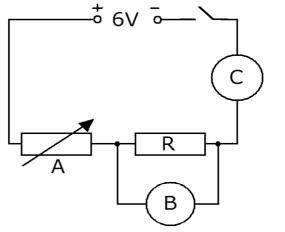
StudentBounty.com 7. (a) A 12 Ω resistor and a 6 Ω resistor are connected <u>in series</u> as shown in **Diagram 4**


Calculate the:

(i) total current flowing through the circuit,

(ii)	voltage across the 12 Ω resistor,	[1]
(iii)	voltage across the 6 Ω resistor.	[1]

[1]


(b) The two resistors are now connected in parallel as shown in Diagram 5.

Calculate the:

- total resistance of the circuit, (i)
- [1] current flowing through the 12 Ω resistor, (ii) [1] (iii) current flowing through the 6 Ω resistor. [1]

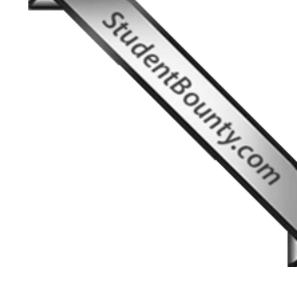
(c) A student sets up the following circuit to investigate the resistance of resistor R (6). Component A is used to change the voltage and current in the circuit. The reading B and C are recorded in a table.

(i) Name the components A, B and C.

A.	 B.	C.	
	-		[3]

The student takes a set of readings as shown below.

Current (A)	0	1.8	3.9	5.4	7.2	9.0
Voltage (V)	0	1	2	3	4	5


(ii) Plot a graph of current (y axis) against voltage (x axis).

(iii) Calculate the value of the resistor R when the reading on the voltmeter is 4.2 V.

[2]

[4]

Diagram 6

www.StudentBounty.com Homework Help & Pastpapers

	Stude	
8.	A small child is playing in the middle of the road. The velocity-time graph shows the motion of a car from the moment the driver sees the child till when he stops the car completely.	ItBounts
a)	Describe the type of motion present in the: 0 0.6 time (s)	4.6
	(i) first 0.6 s	[1]
	(ii) last 4 s	[1]
))	What does the area under the graph represent?	
c)	What is the value of the acceleration in the first 0.6 s? $_{m/s^2}$	[1] [1]
l)	Use the graph to calculate the: (i) thinking distance,	
	(ii) braking distance,	[2]
	(iii) total stopping distance,	[2]
	(iv) deceleration of the car in the last 4 seconds.	[1]
(e)	Which of the following, thinking distance , braking distance or both , are affect of the following?	[2] red by each
	(i) A car's mass affects the	
	 (i) Mean of mass affects the	[1]
	(ii) A car's speed affects the	[1]
	(iv) Wet roads affect the	[1]
	()	[1]

www.StudentBounty.com Homework Help & Pastpapers