DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION Department for Curriculum Management and eLearning **Educational Assessment Unit Annual Examinations for Secondary Schools 2011** 

# StudentBounts.com FORM 4 **CHEMISTRY**

Name: \_\_\_\_\_

Class:

Atomic numbers and relative atomic masses are shown in the periodic table printed below. Useful Data: One mole of any gas occupies 22.4 dm<sup>3</sup> at standard temperature and pressure Faraday constant =  $96500 \text{ C mol}^{-1}$ Q =It

#### State symbols are expected to be included in all chemical equations.

|                        |                               |                        |                                  |                        |                       |                        | PER                                                                 | RIODI                  | C TAI                  | BLE                    |                                                |                        |                                                            |                        |                        |                         |                        |
|------------------------|-------------------------------|------------------------|----------------------------------|------------------------|-----------------------|------------------------|---------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------------------------------|------------------------|------------------------------------------------------------|------------------------|------------------------|-------------------------|------------------------|
| 1                      | 2                             |                        |                                  |                        |                       |                        |                                                                     |                        |                        |                        |                                                | 3                      | 4                                                          | 5                      | 6                      | 7                       | 0                      |
|                        |                               |                        |                                  |                        |                       |                        | $\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{}}}}}$ |                        |                        |                        |                                                |                        |                                                            |                        |                        |                         | 4<br><b>He</b><br>2    |
| 7<br><b>Li</b><br>3    | 9<br><b>Be</b><br>4           |                        |                                  |                        |                       |                        |                                                                     |                        |                        |                        |                                                | 11<br><b>B</b><br>5    | $\overset{12}{\underset{6}{\overset{12}{\overset{12}{}}}}$ | 14<br><b>N</b><br>7    | 16<br><b>O</b><br>8    | 19<br><b>F</b><br>9     | 20<br><b>Ne</b><br>10  |
| 23<br><b>Na</b><br>11  | 24<br><b>Mg</b><br>12         |                        |                                  |                        |                       |                        |                                                                     |                        |                        |                        |                                                | 27<br><b>Al</b><br>13  | 28<br><b>Si</b><br>14                                      | 31<br><b>P</b><br>15   | 32<br><b>S</b><br>16   | 35.5<br><b>Cl</b><br>17 | ${}^{40}_{18}$         |
| 39<br><b>K</b><br>19   | ${\overset{40}{{f Ca}}}_{20}$ | 45<br><b>Sc</b><br>21  | 48<br><b>Ti</b><br>22            | 51<br><b>V</b><br>23   | 52<br><b>Cr</b><br>24 | 55<br><b>Mn</b><br>25  | 56<br>Fe<br>26                                                      | 59<br><b>Co</b><br>27  | 59<br><b>Ni</b><br>28  | 63.5<br>Cu<br>29       | 65<br><b>Zn</b><br>30                          | 70<br><b>Ga</b><br>31  | 73<br><b>Ge</b><br>32                                      | 75<br><b>As</b><br>33  | 79<br><b>Se</b><br>34  | 80<br>Br<br>35          | 84<br><b>Kr</b><br>36  |
| 85<br><b>Rb</b><br>37  | 88<br>Sr<br>38                | 89<br><b>Y</b><br>39   | ${\mathop{Zr}\limits_{40}}^{91}$ | 93<br><b>Nb</b><br>41  | 96<br><b>Mo</b><br>42 | 99<br><b>Tc</b><br>43  | $\overset{101}{\underset{44}{\mathbf{Ru}}}$                         | 103<br><b>Rh</b><br>45 | 106<br><b>Pd</b><br>46 | 108<br><b>Ag</b><br>47 | $\overset{112}{\underset{48}{\overset{12}{}}}$ | 115<br><b>In</b><br>49 | 119<br><b>Sn</b><br>50                                     | 122<br><b>Sb</b><br>51 | 128<br><b>Te</b><br>52 | 127<br><b>I</b><br>53   | 131<br><b>Xe</b><br>54 |
| 133<br><b>Cs</b><br>55 | 137<br><b>Ba</b><br>56        | 139<br><b>La</b><br>57 | 178<br><b>Hf</b><br>72           | 181<br><b>Ta</b><br>73 | 184<br><b>W</b><br>74 | 186<br><b>Re</b><br>75 | 190<br><b>Os</b><br>76                                              | 192<br>Ir<br>77        | 195<br><b>Pt</b><br>78 | 197<br><b>Au</b><br>79 | 201<br><b>Hg</b><br>80                         | 204<br><b>Tl</b><br>81 | 207<br><b>Pb</b><br>82                                     | 209<br><b>Bi</b><br>83 | 210<br><b>Po</b><br>84 | 210<br>At<br>85         | 222<br><b>Rn</b><br>86 |

Key

а  $\mathbf{X}_{b}$  relative atomic mass symbol

atomic number

#### Marks Grid [ For Examiners use only ]

| Question       |    |    | Secti | ion A |    |    |    | Section | B  | ]               |
|----------------|----|----|-------|-------|----|----|----|---------|----|-----------------|
| Nº.            | 1  | 2  | 3     | 4     | 5  | 6  | 7  | 8       | 9  |                 |
| Max<br>Mark    | 10 | 10 | 10    | 10    | 10 | 10 | 20 | 20      | 20 | Theory<br>Total |
| Actual<br>Mark |    |    |       |       |    |    |    |         |    |                 |

| Theory Paper: 85% | Practical: 15% | Final Score: 100% |
|-------------------|----------------|-------------------|
|                   |                |                   |

### **SECTION A – Answer ALL questions. This section carries 60 marks.**

- StudentBounty.com In the laboratory, zinc oxide can be prepared by the thermal decomposition of either zinc 1 carbonate or zinc nitrate.
- a. Explain the term thermal decomposition.
- b. (i) Write down balanced equations, including state symbols, to show how zinc oxide is prepared from :
  - zinc carbonate: \_\_\_\_\_
  - zinc nitrate:
  - (ii) The prepared compound in b. (i) undergoes a noticeable colour change as it cools down to room temperature. Fill in the two boxes below with the colour of the compound at the temperatures indicated.



- c. Zinc sulfate can be prepared in the laboratory from zinc oxide.
  - (i) Which one of these types of reactions is used in this preparation?

| precipitation  | displacement |  |
|----------------|--------------|--|
| neutralization | synthesis    |  |

(ii) Give one important practical step that ensures that the zinc sulfate solution obtained is pure.

(iii) Which method is suitable to obtain hydrated zinc sulfate from zinc sulfate solution?

[3]

[1]

[6]

- StudentBountst.com
- 2 Most gases can be collected by one of the following methods:

A - downward delivery
 B - upward delivery
 C - over water

Fill in the table below:

| One suitable method of collection.<br>Choose <b>A</b> or <b>B</b> or <b>C</b> . | Reason why this gas is collected using this method. |
|---------------------------------------------------------------------------------|-----------------------------------------------------|
|                                                                                 |                                                     |
|                                                                                 |                                                     |
|                                                                                 |                                                     |
|                                                                                 |                                                     |
|                                                                                 |                                                     |
|                                                                                 |                                                     |

[10]

3 a. Fill in the table below as follows:

- **Column 1**: In this column, write down the names of **two** starting materials that are required for the manufacture of **each** of the named chemicals.
- **Column 2**: In this column, give the name of the catalyst that is used for **each** of the processes involved in the industrial preparation of the named chemicals.
- Column 3: In this column, write down one important use for each of the named chemicals.

| Name of Industrial process | Name of starting materials. | Name of catalyst. | One important use. |
|----------------------------|-----------------------------|-------------------|--------------------|
|                            | Column 1.                   | Column 2.         | Column 3.          |
| Haber process.             | (i)                         |                   |                    |
| (Ammonia)                  | (ii)                        |                   |                    |
| Contact process.           | (i)                         |                   |                    |
| (Sulfuric acid)            | (ii)                        |                   |                    |
| Ostwald process.           | (i)                         |                   |                    |
| (Nitric acid)              | (ii)                        |                   |                    |

[9]

b. Aqueous ammonia reacts with dilute sulfuric acid to produce aqueous ammonium sulfate and water. Write down a balanced equation for this reaction. **No need to include state symbols**.

| S.                                                                                                                                                                                 |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1 de                                                                                                                                                                               |       |
|                                                                                                                                                                                    | 8     |
|                                                                                                                                                                                    | "Ung  |
| <ul> <li>4 X is an unknown crystalline solid. To identify the ions present in a sample of X, a student performed the tests below.</li> </ul>                                       | 4.com |
| • A sample of <b>X</b> was heated with aqueous sodium hydroxide. A gas <b>Y</b> which turned dar pH paper blue was evolved.                                                        |       |
| <ul> <li>An aqueous solution of X was treated with silver nitrate solution acidified with dilute nitric acid. A pale yellow precipitate Z was formed.</li> </ul>                   |       |
| a. (i) Give the name of the gas <b>Y</b> .                                                                                                                                         |       |
| (ii) Name one drying agent suitable to dry a sample of <b>Y</b> .                                                                                                                  |       |
| (iii) Give a reason why gas <b>Y</b> turned damp pH paper blue.                                                                                                                    |       |
|                                                                                                                                                                                    | [3]   |
| b. (i) Give the name of the precipitate Z.                                                                                                                                         |       |
| <ul> <li>(ii) Write down an ionic equation to show the formation of Z by the reaction between X i aqueous solution and acidified silver nitrate. Include state symbols.</li> </ul> | n     |
|                                                                                                                                                                                    | [3]   |
|                                                                                                                                                                                    |       |
| c. (i) Identify the substance <b>X</b> .                                                                                                                                           |       |
| (ii) Write down the ionic formula of <b>X</b> .                                                                                                                                    | [2]   |
| d. It was found experimentally that the pH of an aqueous sample of <b>X</b> was 5.2. Is such a solu                                                                                | ition |
| acidic, neutral or alkaline?                                                                                                                                                       |       |
|                                                                                                                                                                                    | [1]   |
| e. Crystals of substance $\mathbf{X}$ must necessarily be stored in a dry airtight container. Which prope                                                                          | erty  |
| of <b>X</b> makes this necessary?                                                                                                                                                  | [1]   |
|                                                                                                                                                                                    | [1]   |

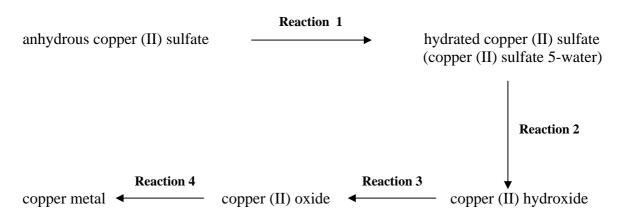
5 To answer this question, you have to use the Periodic Table printed on the front page of this question paper together with the information in the table below:

|             |                | <u></u>                                    |                                |                               |               |
|-------------|----------------|--------------------------------------------|--------------------------------|-------------------------------|---------------|
|             | Metal          | Reaction with Water                        | Melting Point in °C            | Density in g cm <sup>-3</sup> |               |
|             | Lithium        | slow                                       | 181                            | 0.54                          |               |
|             | Sodium         | fast                                       | 98                             | 0.97                          |               |
|             | Potassium      | very fast                                  | 63                             | 0.86                          |               |
|             | Rubidium       |                                            | 39                             | 1.53                          |               |
| b. (i) Lith |                | ce in the table.<br>and potassium float on | ı water but rubidium a         |                               | [1]<br>7e     |
|             |                |                                            |                                | • .1 . 11 •.1 .               |               |
| (11) G1V    | e a chemical   | equation for the reactio                   | on of <b>one</b> of the metals | in the table with water       | •             |
| Inc         | lude state sy  | mbols.                                     |                                |                               |               |
|             | 2              |                                            |                                |                               |               |
| (iii) Sugg  | gest a pH val  | ue for the resulting solu                  | ation in b. (ii).              |                               |               |
|             |                |                                            |                                |                               | [4]           |
| c. (i) Caes | ium melts if   | it is held in the hand. Is                 | this true or false?            |                               |               |
|             |                |                                            |                                |                               |               |
|             | True           |                                            | Ι                              | False                         |               |
| (ii) Give   | a reason for   | your answer to c. (i).                     |                                |                               |               |
|             |                | your answer to c. (i).                     |                                |                               |               |
|             |                |                                            |                                |                               |               |
|             |                |                                            |                                |                               | [2]           |
|             |                |                                            |                                |                               |               |
| a. (1) Choo | ose one meta   | l from the table and wri                   | ite a symbol equation          | for the formation of its      | 10 <b>n</b> . |
| No r        | need to inclu  | de state symbols                           |                                |                               |               |
|             |                |                                            |                                |                               |               |
| (ii) The f  | formation of a | a metallic ion is an oxid                  | lation. Give a reason f        | for this.                     |               |
|             |                |                                            |                                |                               |               |
|             |                |                                            |                                |                               | [2]           |
|             |                |                                            |                                |                               |               |
| e. Choose   | one metal fro  | om the table and state the                 | he <b>colour</b> that its com  | pounds impart to the B        | unsen         |
| <u>c</u> 1  | М.,            | .1.                                        | C-1                            |                               |               |

flame. Metal: \_\_\_\_\_ Colour: \_\_\_\_

[1]

www.StudentBounty.com Homework Help & Pastpapers


|                             | · Eta                                                                                                                                                                                                                                                                                                              |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | The                                                                                                                                                                                                                                                                                                                |
|                             | OH                                                                                                                                                                                                                                                                                                                 |
|                             |                                                                                                                                                                                                                                                                                                                    |
| Thi                         | is question concerns a dilute aqueous solution of sodium sulfate.                                                                                                                                                                                                                                                  |
| a. Wr                       | ite down the formulae of the <b>four</b> ions present in the solution.                                                                                                                                                                                                                                             |
|                             |                                                                                                                                                                                                                                                                                                                    |
|                             | [2                                                                                                                                                                                                                                                                                                                 |
| b. Wh                       | ile conducting a test for sulfate ions in solution, an acidified reagent is used.                                                                                                                                                                                                                                  |
| (i)                         | Give the name of this reagent.                                                                                                                                                                                                                                                                                     |
| (ii)                        | Give the name of the acid used to acidify this reagent.                                                                                                                                                                                                                                                            |
|                             |                                                                                                                                                                                                                                                                                                                    |
| (iii                        | ) Write down what you observe if sulfate ions are present.                                                                                                                                                                                                                                                         |
| (iii                        | ) Write down what you observe if sulfate ions are present.                                                                                                                                                                                                                                                         |
| (iii                        | ) Write down what you observe if sulfate ions are present                                                                                                                                                                                                                                                          |
| c. If t                     |                                                                                                                                                                                                                                                                                                                    |
| c. If t<br>spl<br>at        | [3]<br>this solution is electrolysed between platinum electrodes, a gas $\mathbf{A}$ which relights a glowing<br>lint is produced at one electrode and another gas $\mathbf{B}$ which burns in air with a pop is produce                                                                                           |
| c. If t<br>spl<br>at        | [3] [3] [3] [3] [3] [4] [5] [5] [5] [5] [5] [5] [5] [5] [5] [5                                                                                                                                                                                                                                                     |
| c. If t<br>spl<br>at<br>(i) | [3<br>[3]<br>[3]<br>[3]<br>[3]<br>[4]<br>[5]<br>[5]<br>[5]<br>[5]<br>[5]<br>[5]<br>[5]<br>[5]<br>[5]<br>[5                                                                                                                                                                                                         |
| c. If t<br>spl<br>at<br>(i) | [3<br>[3<br>[3<br>[3<br>this solution is electrolysed between platinum electrodes, a gas <b>A</b> which relights a glowing<br>lint is produced at one electrode and another gas <b>B</b> which burns in air with a pop is produce<br>the other electrode.<br>Give the name of:<br>Gas <b>A</b> :<br>Gas <b>B</b> : |
| c. If t<br>spl<br>at<br>(i) | [3<br>[3]<br>[3]<br>[4]<br>[5]<br>[5]<br>[5]<br>[6]<br>[6]<br>[6]<br>[6]<br>[6]<br>[6]<br>[6]<br>[6]<br>[6]<br>[6                                                                                                                                                                                                  |

electrolysis.

[5]

## SECTION B – Answer TWO questions only on the foolscap provided. This section carries 40 marks.

StudentBounty.com 7 The reaction scheme below shows a chain of chemical reactions that can be carried out in the laboratory to produce copper metal from anhydrous copper (II) sulfate.



Explain how you would carry out **Reactions 1 to 4** in the laboratory. In each case, your explanation must include:

- the name of the reagent required, if any.
- any condition necessary for the reaction to take place, if such condition exists.
- a chemical equation for each reaction. No need to include state symbols.

For **Reaction 4** only, your answer must also include a labelled diagram of the apparatus used.

[20]

- 8 Give a chemical explanation for **each** of the statements below. In each case, give the equation/s for the reaction/s described. Diagrams are not required.
  - a. Although different methods are used to extract aluminium and iron, both processes involve a reduction reaction. [5]
- b. Since strontium is below calcium in Group II of the Periodic Table, it reacts similarly with water and dilute hydrochloric acid. [6]
- c. When zinc is added to copper (II) sulfate solution, a precipitate is formed but there is no reaction when copper is added to zinc sulfate solution. [4]
- d. If chlorine gas is bubbled into a solution of potassium bromide, a redox reaction occurs and a colour change is observed. [5]

9 A suitable container is filled with 15 cm<sup>3</sup> of a standard solution of sodium carbonate. After adding an appropriate indicator, this volume of sodium carbonate is titrated against a solution of hydrochloric acid of unknown concentration.

The following information may be useful: Relative atomic masses: H = 1, Cl = 35.5

- a. The questions below refer to the practical set-up, the experimental steps and precautions required while carrying out a titration.
  - (i) Name three main items of apparatus needed to carry out a titration.
  - (ii) Name a suitable indicator for this titration and state its colour change at the end point.
  - (iii) State two important steps that must be taken while measuring the volume of a solution.
  - (iv) State three precautions, other than those given in a. (iii) that must be taken in order to obtain accurate results for the titre values. [10]
- b. The molar concentration of the sodium carbonate solution was 0.25 mol dm<sup>-3</sup>. It was found that 15 cm<sup>3</sup> of sodium carbonate required 37.5 cm<sup>3</sup> of hydrochloric acid for exact neutralization.

 $Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$ 

- (i) Calculate the number of moles of sodium carbonate present in the  $15 \text{ cm}^3$  solution.
- (ii) Calculate the number of moles of hydrochloric acid present in the 37.5 cm<sup>3</sup> solution.
- (iii) Calculate the molarity of the hydrochloric acid.
- (iv) Change your answer to question b. (iii) from mol  $dm^{-3}$  to g  $dm^{-3}$ .

[10]