DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION Department for Curriculum Management and eLearning Educational Assessment Unit Annual Examinations for Secondary Schools 2011

## FORM 4

# PHYSICS

Track Track TIME: 1h 30min

Class: \_\_\_\_\_

Name: \_\_\_\_\_

Answer ALL questions in the spaces provided on the Exam Paper. All working must be shown. The use of a calculator is allowed. Where necessary take the acceleration due to gravity,  $g = 10 \text{ m/s}^2$ .

|             | W = mg                                        | Average Speed = $\frac{\text{Total Distance}}{\text{Total Time}}$ |  |  |  |
|-------------|-----------------------------------------------|-------------------------------------------------------------------|--|--|--|
| Forces &    | v = u + at                                    | s = ut + ½ a t <sup>2</sup>                                       |  |  |  |
| Motion      | $s = \frac{(u+v)}{2} t$                       | $v^2 = u^2 + 2as$                                                 |  |  |  |
|             | F = ma                                        | Momentum (p) = mv                                                 |  |  |  |
|             | Q = I t                                       | E = Q V                                                           |  |  |  |
| Electricity | V = I R                                       | $\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3$         |  |  |  |
|             | $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ | $R \alpha \frac{1}{A}$ $R \alpha L$                               |  |  |  |
| 14/0000     | $v = f \lambda$                               | $f = \frac{1}{T}$                                                 |  |  |  |
| waves       | $m = \frac{v}{u}$                             | $m = \frac{\text{height of image}}{\text{height of object}}$      |  |  |  |
|             | n = speed of light in air                     | n =real depth                                                     |  |  |  |
|             | $\frac{1}{1}$ - speed of light in medium      | apparent depth                                                    |  |  |  |

| Number       | 1 | 2 | 3 | 4 | 5 | 6  | 7  | 8  | Total |
|--------------|---|---|---|---|---|----|----|----|-------|
| Maximum mark | 8 | 8 | 8 | 8 | 8 | 15 | 15 | 15 | 85    |
| Actual mark  |   |   |   |   |   |    |    |    |       |

|              | Total Theory | <b>Total Practical</b> | Final Mark |
|--------------|--------------|------------------------|------------|
| Actual Mark  |              |                        |            |
| Maximum Mark | 85           | 15                     | 100        |

#### SECTION A

### This section carries 40 mark

StudentBounts.com 1.(a) A charged perspex (cellulose acetate) strip is suspended as shown in the diagram.



State what you would observe when:

|                                                      | Attraction / Repulsion |     |
|------------------------------------------------------|------------------------|-----|
| another charged perspex strip is brought next to it, |                        |     |
| a charged polythene strip is brought next to it,     |                        |     |
| an uncharged perspex strip is brought next to it.    |                        |     |
|                                                      | ·                      | [3] |

- A light metal sphere is **repelled** by a **positively** charged object. What charge is present on (b) the sphere?
- How can a perspex strip be charged? (c) (i)
  - Explain your answer for c (i) in terms of the movement of electrons. (ii)

[1]

[2]

StudentBounty.com Kyle and Nicole stand on roller skates as shown below. Initially they are at rest. 2.



What is their total momentum **before** they start to push each other? (a)

| (b) | The two skaters push each other and move in <b>opposite</b> directions. Calmomentum of Nicole, if she has a mass of 45 kg and moves to the right at a verm/s. | [1]<br>culate the<br>locity of 2 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| (c) | Kyle has a mass of 50 kg. Calculate the velocity at which he moves to the left.                                                                               | [2]                              |
| (d) | Complete the following:                                                                                                                                       | [2]                              |
|     | The Principle of Conservation of Momentum states that                                                                                                         | [1]                              |

(e) Why does Kyle move at a lower speed?

Kyle and Nicole exert an equal and opposite force on each other. Is this statement correct? (f)

[1]

[1]

|            | below.                |                      |                         |                    |                    | SIL          |
|------------|-----------------------|----------------------|-------------------------|--------------------|--------------------|--------------|
|            | Object                |                      |                         |                    |                    |              |
|            |                       |                      |                         |                    |                    |              |
|            |                       |                      |                         |                    |                    |              |
|            |                       | Υ                    |                         |                    | Image              |              |
|            |                       | Lens                 |                         |                    |                    |              |
| a)         | Complete the ab       | ove diagram by add   | ing the missi           | ng rays.           | 1 1                | [2]          |
| <b>)</b> ) | On the above dia      | igram, mark with an  | • <b>'F</b> ' the prine | cipal focus of the | lens.              | [1]          |
| c)         | Give one examp        | le when the above le | ens arrangem            | ent is used.       |                    |              |
| (d)        | Use the above di      | agram to calculate t | he magnifica            | tion of the lens.  |                    | [1]          |
| (e)        | Name <b>one</b> other | property of the inve | erted image p           | roduced.           |                    | [1]          |
| (f)        | The image is pr       | oduced on a screen   | h. What hap             | pens to the imag   | e if the screen is | [1]<br>moved |
|            | away from the le      | ins, assuming every  | thing else is i         | inchanged?         |                    |              |
|            |                       |                      |                         |                    |                    |              |



5. A test track is set up to test the braking system of cars. Sensors are connected logger which records the speed of a car at points P and Q as shown in diagram below. In one test, the data logger records the speed at P as 30 m/s and the speed at Q as 12 n. The time to move from P to Q is 2 seconds.



(a) Calculate the deceleration of the car.

(b) The mass of the car is 1000 kg. Calculate the braking force acting on the car.

- (c) Calculate the length of the braking zone.
- (d) The test is repeated with the same car but now with passengers inside. The speed at P is again 30 m/s. The same braking force is applied to the car as in part (b).
  - (i) Will the **momentum** of the car at P increase, decrease or remain the same?
  - (ii) Will the **deceleration** of the car between P and Q be smaller than, equal to or greater than the one calculated in (a) above? Explain.

[2]

[1]

[2]

[1]

[2]



www.StudentBounty.com





Diagram 2

- (i) Draw the shape of the wavefronts after they travel through the gap. [2]
- (ii) This effect is more visible as the gap is narrowed. Name this effect.
- (d) A ray of light changes direction when it travels from air to glass.



- (i) Draw on **Diagram 3** above the path of the ray of light as it passes through and out of the glass block. [3]
- (ii) Name the effect observed.

[1]

StudentBounty.com

[1]





[1]

[1]

[1]

Calculate the:

- (i) total resistance in the circuit,
- (ii) total current flowing through the circuit,
- voltage across one of the 6  $\Omega$  resistors. (iii)

(b) The two resistors are now connected in parallel as shown in Diagram 5.



Calculate the:

- total resistance of the circuit, (i)
- [1] (ii) current flowing through the circuit, [1] (iii) current flowing through one of the 6  $\Omega$  resistors. [1]

(c) A student sets up the following circuit to investigate the resistance of resistor R (1)
6). The component A is used to change the voltage and current in the circuit. The reason on B and C are recorded in a table.



(i) Name the components A, B and C.

| A. | В. | C. |         |   |
|----|----|----|---------|---|
|    |    |    | <br>[3] | ] |

The student takes a set of readings as shown below.

| Current (A) | 0 | 1.8 | 3.9 | 5.4 | 7.2 | 9.0 |
|-------------|---|-----|-----|-----|-----|-----|
| Voltage (V) | 0 | 1   | 2   | 3   | 4   | 5   |

- (ii) Plot a graph of current (y axis) against voltage (x axis). Draw the best straight line through the points. [4]
- (iii) Use the graph to find the value of the current when the voltmeter reads 4.2V.
- (iv) Using the formula R = V / I calculate the value of the resistor R when the reading on the voltmeter is 4.2 V.

[1]



www.StudentBounty.com Homework Help & Pastpapers



#### www.StudentBounty.com Homework Help & Pastpapers