Name: \qquad Class: \qquad

Mark

INSTRUCTIONS TO CANDIDATES

- Answer all questions. There are 20 questions to answer.
- Each question carries 1 mark.
- Calculators and protractors are not allowed.
- You are not required to show your working. However space for working is provided if you need it.

No.	Question	Space for Workit
1	Each exterior angle of a regular polygon is 24°. How many sides has the polygon? Answer:	
2	Write 2300000 in standard form. Answer:	
3	 Write down the gradient of the line. Answer: \qquad	
4	Given that $f(x)=2 x-8$, write down the value of $f(3)$. Answer: \qquad	
5	Lawrence invests $€ 3500$ in a bank at 4% per annum. Find the interest that Lawrence receives from the bank after one year. Answer: € \qquad	
6	O is the centre of the circle and POR is a straight line. Find the size of angle PRQ. Answer: \qquad	
7	How many hours are there from 1900 hours on Monday to 0800 hours on Wednesday of the same week? Answer: \qquad hours	

No.	Question	Space for Wor
8	Three athletes run a marathon in: 2 hours 37 minutes, 3 hours 23 minutes and 3 hours. What is the average time taken by the athletes? Answer: \qquad	
9	Find the length of $\mathbf{B C}$. Answer: \qquad cm	
10	There are 150 students in a hall sitting for an examination. Each student requires 8 foolscaps. Each sealed packet of foolscaps contains 500 foolscaps. How many packets of foolscaps are needed? Answer: \qquad packets	
11	In a survey at an airport it was found that $\frac{1}{8}$ of the flights arrived early, $\frac{5}{8}$ of the flights arrived on time and the remainder arrived late. What fraction of the flights arrived late? Answer: \qquad	
12	Sarah buys three different kinds of postage stamps: She buys 80 of each kind. How much does she spend? Answer: $€$	
13	The pie chart shows the results of a survey of 720 children about their favourite fast foods. How many children chose chicken nuggets? Answer: \qquad	

No.	Question	Space for Wor
14	Given that $a=\frac{3}{4}$ and $b=\frac{3}{2}$, find the value of $\frac{1}{a}+\frac{1}{b}$. Answer: \qquad	
15	Given that $\tan x^{0}=\frac{1}{3}$, find the length of $\mathbf{Q R}$. Answer: \qquad cm	
16	The graph shows the journey of a cyclist. Write down the speed of the cyclist in $\mathbf{k m} / \mathbf{h}$. Answer: \qquad km/h	
17	A man earns $€ 13400$ and is allowed $€ 11400$ free of tax. He pays a tax of $\mathbf{1 5 \%}$ on the remainder. How much tax does he pay? Answer: € \qquad	
18	Work out $4-\left(\frac{2}{9}+\frac{2}{3}\right)$, giving your answer as a mixed number. Answer: \qquad	
19	The sum of three consecutive numbers is $3 x+51$. Which one of the following is the largest number? A) $x+16$ B) $x+17$ C) $x+18$ D) $x+19$ Answer: \qquad	
20	Make \boldsymbol{y} the subject of the formula $\boldsymbol{x}=\sqrt{\frac{y}{18}}$. Answer: \qquad	

1	2	3	4	5	6	7	8	9	10	11	12	13	NC	Main	Global

Name: \qquad Class: \qquad
DO NOT WRITE ABOVE THIS LINE

CALCULATORS ARE ALLOWED BUT ALL NECESSARY WORKING MUST BE SHOWN. ANSWER ALL QUESTIONS.

1. (a) The price for accommodation at a hotel in Spain is $€ 116.25$, not including 7% VAT. Work out the total amount paid including VAT.
Give your answer correct to the nearest cent.

Total amount including VAT $=€$ \qquad
(b) Another hotel quotes a total price of $€ 149.80$, including 7\% VAT. Work out the price of accommodation before VAT was included.

Price before VAT was included = $€$ \qquad
2. Solve the equation $\frac{2 x-3}{3}-\frac{x}{4}=\frac{1}{2}$.
\qquad
3. The figure shows a cylinder closed at both ends and its net.

(a) Show that the total surface area, \boldsymbol{S}, of the cylinder is: $\boldsymbol{S}=\mathbf{2} \pi \boldsymbol{r}(\boldsymbol{r}+\boldsymbol{h})$.
(b) Work out the total surface area when $r=4 \mathrm{~cm}$ and $h=10 \mathrm{~cm}$.

Give your answer correct to three significant figures.

Total surface area $=$ \qquad cm^{2}
(c) Make \boldsymbol{h} the subject of the formula given in (a).

Name: \qquad Class: \qquad
4. (a)

Figure 1

In Figure 1:

(i) Triangles ABC and ADC can be proved to be congruent. Underline the correct reason.
SAS RHS SSS ASA
(ii) Complete the following statement: Since triangles ABC and ADC are congruent

$$
\angle \mathrm{BAC}=\angle
$$

(b)

In Figure 2 the diagonals AC and BD are drawn to meet at X .
(i) Prove that triangles ABX and ADX are congruent, giving reasons for your answers.

Figure 2
(ii) Explain why AC and BD are perpendicular.
5. Complete the set of LOGO commands given to the turtle to draw the isosceles trapezium ABCD .
The turtle started at the point A as shown.

PD RT \qquad FD 70 RT \qquad FD 120 RT \qquad FD \qquad HOME
6.

Diagram NOT drawn to scale

The angles of elevation of the top of a build from A and B are 36° and 62° respectively. BA
NO marks will be awarded unless ALL working shown.
(a) Show that $\mathrm{BX}=5.88 \mathrm{~m}$, correct to the nearest $\mathbf{c m}$.
(b) (i) Explain why $\angle \mathrm{ADB}=26^{\circ}$.
(ii) Hence work out the length of BD , correct to the nearest $\mathbf{~ c m}$.
$B D=$ \qquad m
(c) Work out the height of the building, CD , correct to the nearest $\mathbf{c m}$.
$C D=$ \qquad m
7. (a) Each of the following numbers is correct to one decimal place:

$$
a=9.1 ; \quad b=4.7 ; \quad c=6.3
$$

(i) Complete the following inequalities to illustrate the lower and upper bounds of each number. (The inequality for c is done for you).

Name: \qquad Class: \qquad
7. (b) A factory produces spheres used as garden ornaments. The weight $W \mathrm{~kg}$ of each sphere is directly proportional to the cube of its diameter $\boldsymbol{d} \mathrm{cm}$.
(i) Write down a formula connecting W and \boldsymbol{d}.
(Use k for the constant of proportionality).
(ii) Find the value of k given that an ornament of diameter 30 cm weighs 9 kg . Give k as a fraction in its lowest terms.

$$
k=
$$

\qquad
(iii) For safety reasons each ornament cannot weigh more than 30 kg .

Find the largest diameter of an ornament, correct to the nearest cm.
\qquad cm
8. (a) Solve the inequalities $11-2 x>1+3 x>4 x-6$.
(b) Write down the largest integer that satisfies the inequalities.
\qquad
9. Use ruler and compasses only to answer this question. All construction lines and arcs must be clearly shown.
(a) \mathbf{L} is a line segment joining points A and B.
(i) Construct the lines perpendicular to the line segment \mathbf{L} at A and B .
(ii) Draw the locus of all points which are 2 cm away from the line segment \mathbf{L}.

L

A
B
(b) The diagram shows part of a map of an island with a hidden treasure. $A B, B C, C D$ and $A D$ are straight paths on the island with $A D$ and $B C$ both perpendicular to $A B$.
The map says that the treasure is hidden on the island, 2 km from the path $A B$ and exactly the same distance from path BC and path CD.

Scale: 1cm represents 1km
(i) Construct the loci of points which satisfy both the above conditions.
(ii) Mark with a \mathbf{T} the position where the treasure is hidden and measure the distance AT in cm, correct to one decimal place.

AT = \qquad cm
10. Paul has 100 songs on his MP3 player. Of these, 60 are classified as Rock (as Jazz (\mathbf{J}). He plays the songs in shuffle mode (the songs are played in rando and not repeated).
(a) Complete the probability tree diagram to show all the possible outcomes when the first three songs are played.

(b) Give your answers to the following questions correct to 2 decimal places.
(You are advised to work out intermediate answers correct to at least $\mathbf{4}$ decimal places.)
Work out the probability that:
(i) Only two of the first three songs played are Rock (R).
(ii) At least one of the first three songs played is Rock (R).
11. P, Q, R, S and T are points on the circumference of the circle, centre O. ATB is a tangent to the circle at $\mathrm{T} . \angle \mathrm{PRS}=48^{\circ}$ and $\angle \mathrm{SQT}=27^{\circ}$.
Show all your working and give reasons for your answers.
Work out the size of:
(a) $\angle \mathrm{QST}$

(b) $\angle \mathrm{BTS}$
(c) $\angle \mathrm{ATP}$
12. The table below shows information about the weekly rainfall at holiday resort, \mathbf{A}, during the year 2008.

Weekly rainfall (r) in mm	$0<r \leq 5$	$5<r \leq 10$	$10<r \leq 15$	$15<r \leq 20$	$20<r \leq 25$	$25<r \leq 30$
Frequency (number of weeks)	16	20	7	4	3	2

(a) Complete the following cumulative frequency table:

Weekly rainfall (r) in mm	$r \leq 5$	$r \leq 10$	$r \leq 15$	$r \leq 20$	$r \leq 25$	$r \leq 30$
Cumulative Frequency (number of weeks)	16	36	43			52

(b) Use the data in the cumulative frequency table to complete the cumulative frequency curve on the grid shown on the next page.
(c) Use your curve to estimate:
(i) the median weekly rainfall at resort \mathbf{A}. \qquad mm
(ii) the interquartile range of the rainfall at resort \mathbf{A}.
\qquad mm

(d) Complete box plot \mathbf{A} to illustrate the distribution for resort \mathbf{A}.

Box plot \mathbf{B} shows the weekly rainfall at another resort \mathbf{B} during the same year.
(e) Which one of the following statements is true?

Explain your answer.
(i) "The weekly rainfall at resort \mathbf{B} is generally greater than at resort \mathbf{A} ".
(ii) "The weekly rainfall at resort \mathbf{A} is generally greater than at resort \mathbf{B} ".
13. The graph of $y=x^{3}+3$ is shown below.

(a) Find the equation of the straight line which should be drawn on the same graph to solve the equation $x^{3}+3 x+3=0$.

Equation: \qquad
(b) Draw, on the same axes, the straight line graph of the equation found in (a).
(c) Write down an estimate, correct to one decimal place, for the value of \boldsymbol{x} at the point of intersection of the curve and the line.

$$
x=
$$

\qquad
(d) In this part of the question use your answer to (c).

Use the method of trial and improvement to work out, correct to two decimal places, an estimate for the value of x for which $x^{3}+3 x+3=0$.
\qquad

END OF PAPER

