DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION
Department for Curriculum Management and eLearning
Educational Assessment Unit
Annual Examinations for Secondary Schools 2013

Name: $\qquad$ Class: $\qquad$
Answer ALL questions in the spaces provided on the Examination Paper.
All working must be shown. The use of a calculator is allowed.
Where necessary take the acceleration due to gravity $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

| Density | $\mathrm{m}=\boldsymbol{\rho} \mathbf{V}$ |  |
| :---: | :---: | :---: |
| Pressure | $\mathbf{P}=\mathbf{h} \boldsymbol{\rho} \mathrm{g}$ | $\mathbf{P}=\mathbf{F} / \mathbf{A}$ |
| Moment | $\text { Moment =F } \underset{\substack{\text { x perpendicular } \\ \text { distance }}}{\text { ( }}$ |  |
| Energy | $\begin{aligned} & \mathbf{P E}=\mathbf{m g h} \\ & \mathbf{E}=\mathbf{P} \mathbf{t} \end{aligned}$ | $\begin{aligned} & \text { KE }=1 / 2 \mathbf{m} \mathbf{v}^{2} \\ & \text { Work Done }=\mathrm{Fs} \end{aligned}$ |
| Force | $\mathbf{F}=\mathrm{ma}$ | $\mathbf{W}=\mathbf{m g}$ |
| Motion | $\begin{aligned} & \text { Average speed }=\frac{\text { totaldistance }}{\text { totaltime }} \\ & \text { Momentum }=\mathbf{m} \mathbf{v} \end{aligned}$ | $\begin{aligned} & v=u+a t \\ & s=u t+1 / 2 \mathbf{a t}^{2} \\ & \mathbf{s}^{2}=\mathbf{u}^{2}+2 \mathbf{2 a s} \\ & \mathbf{s}=\frac{(\mathbf{u}+\mathbf{v}) \mathbf{t}}{2} \end{aligned}$ |
| Electricity | $\begin{aligned} & \mathbf{Q}=I t \\ & V=I R \\ & P=I V \\ & E=I V t \end{aligned}$ | $\begin{aligned} & \mathbf{E}=\mathbf{Q} \mathbf{V} \\ & \mathbf{R}_{\mathrm{T}}=\mathbf{R}_{1}+\mathbf{R}_{2}+\mathbf{R}_{3} \\ & \frac{\mathbf{1}}{\mathbf{R}_{\mathbf{T}}}=\frac{\mathbf{1}}{\mathbf{R}_{\mathbf{1}}}+\frac{\mathbf{1}}{\mathbf{R}_{\mathbf{2}}} \end{aligned}$ |
| Electromagnetism | $\frac{\mathbf{N}_{1}}{\mathbf{N}_{2}}=\frac{\mathbf{V}_{1}}{\mathbf{V}_{2}}$ |  |
| Heat | $\mathbf{Q}=\mathbf{m c t a}$ |  |
| Waves | $\begin{aligned} & \mathbf{v}=\mathbf{f} \lambda \quad \mathbf{f}=\frac{1}{\mathrm{~T}} \\ & \eta=\frac{\text { realdepth }}{\text { apparentdepth }} \end{aligned}$ | $\begin{gathered} m=\frac{\mathbf{h}_{\mathbf{i}}}{\mathbf{h}_{\mathbf{0}}}=\frac{\text { imagedistance }}{\text { objectdistance }} \\ \eta=\frac{\text { speed of lightinair }}{\text { speed of lightinmedium }} \end{gathered}$ |
| Radioactivity | $\mathbf{A}=\mathbf{Z}+\mathbf{N}$ |  |

Marks Grid: For the Examiners' use ONLY

| Question | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Th. | Prac | Total | Final Mark \% |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mark | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 170 | 30 | 200 | 100 |
| Score |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Section A: This section has 7 questions. Each question carries 10 marks.

1a. Complete the missing words by choosing the correct words from the list below:

> created, diminished, destroyed, magnified, changed

The principle of conservation of energy states that energy can neither be $\qquad$ nor
$\qquad$ , but can be $\qquad$ from one form to another.
b. The list below includes various forms of energy:
heat energy, electrical energy, sound energy, wind energy, light energy

## television

Choose from this list one form of energy for each of the following:

i. energy input to the television,
ii. useful energy output by the screen of the television,
iii. useful energy output by the speakers of the television,
iv. energy wasted by the television.
c. A television set uses 300 W of electrical power to produce 270 W of useful power. Calculate:
i. the power wasted by the television set,
$\qquad$
ii. the efficiency of the television set.
2. Matthew has four solid blocks of the same size but of different materials as shown below. The density of the material of each block is given in Table 1 below.

copper

iron

redwood

lead
a. Calculate:
i. the mass of the $20 \mathrm{~cm}^{3}$ copper block in grams (g),
$\qquad$ (2)
ii. the mass of the copper block in kilograms ( kg ),
$\qquad$ (1)
iii. the weight of the copper block.

| Material | Density $\rho$ in $\mathbf{g} / \mathbf{c m}^{3}$ |
| :---: | :---: |
| copper | 8.9 |
| iron | 7.9 |
| redwood | 0.5 |
| lead | 11.4 |

Table 1
$\qquad$ (2)
b. The density of water is $1 \mathrm{~g} / \mathrm{cm}^{3}$.
i. Name one material from Table 1 which floats on water.
ii. Give a reason for your answer.
(1)
c. Joseph has another iron block, marked L, larger than that of Matthew's, marked S.
i. Tick $(\sqrt{ })$ one box with the correct answer.

The density of the larger iron block $\mathbf{L}$ is:

iron
L
iron
$\square$ greater than $7.9 \mathrm{~g} / \mathrm{cm}^{3}$ $\square$ smaller than $7.9 \mathrm{~g} / \mathrm{cm}^{3}$
$\square$ equal to $7.9 \mathrm{~g} / \mathrm{cm}^{3}$
ii. Give a reason for your answer.
$\qquad$
3. The figure below represents Nadine and John sitting on a uniform seesaw AB. The weight of the seesaw is 300 N and the pivot is at the centre of the seesaw. Nadine weighs 400 N .
a. Find:

i. the distance between John and the pivot $\mathbf{P}$,
ii. the direction of Nadine's turning effect about the pivot $\mathbf{P}$.
b. On the above figure, mark the position of the weight of the seesaw $\mathbf{A B}$ by means of an arrow.
c. Calculate:
i. the size of Nadine's moment about the pivot,
$\qquad$
ii. John's weight assuming that the seesaw is perfectly horizontal (in equilibrium),
$\qquad$
$\qquad$
iii. the total weight supported by the pivot.
$\qquad$

4a. The figure represents a ray diagram for an object O placed in front of a converging lens RS. A ray of light from the top of the object O is drawn to indicate the position of the image I.
i. Draw another ray of light from the top of the object O to show how the position of the image $\mathbf{I}$ is formed.
(1)

ii. Is the image real or virtual?
iii. Name one other property of the image.
iv. The ray diagram shows the converging lens RS being used as a
b. Use the ray diagram (one square represents $\mathbf{1} \mathbf{~ c m}$ ) to determine the approximate:
i. object distance, $u$,
ii. height of the image, $\mathrm{h}_{\mathrm{i}}$,
iii. magnification of the converging lens RS,
iv. focal length of the lens RS.
5. The list below includes a set of electrical components that can form part of an electric circuit: switch, diode, rheostat, light dependent resistor (LDR), thermistor, connecting wire
a. State which component from the above list:
i. is used to allow current to flow in one direction only,
ii. causes a break in the circuit, stopping the current flow, $\qquad$
iii. has a high resistance at low temperature,
iv. has its resistance dependent on the light intensity. $\qquad$
b. In the circuit diagram shown, calculate:
i. the total resistance of the circuit,

ii. the total current flowing through the circuit,
(2)
iii. the power P of the circuit.
$\qquad$
6. Ralph, of weight 700 N , jogs every morning wearing running shoes. The area of each foot is $0.25 \mathrm{~m}^{2}$.
a. Calculate:
i. the total area of contact with the ground when Ralph stands on both feet,
$\qquad$
(2)
ii. the pressure exerted by Ralph while standing on both feet.
$\qquad$
b. How does the pressure exerted on the ground change when Ralph:
i. stands on one foot? Explain.
$\qquad$
ii. stands on two feet holding a 200 N weight in his hand? Explain.
$\qquad$
(2)
c. Explain why football shoes studs provide for a better grip with the ground.

(2)
football shoes
(with studs)
7. A slinky spring fixed at one end is held by Elise at the other end.

|  |  |
| :--- | :--- |
|  |  |

a. Draw in the space above two possible types of waves that Elise can produce with the slinky spring.
b. Draw arrows to show how she moves her hands to produce each type of wave.
c. Name each type of wave.

Wave A - $\qquad$ Wave B - $\qquad$
d. Complete the following:
i. Sound waves are $\qquad$ ii. Water waves are $\qquad$
e. Sound waves travel with a speed of $330 \mathrm{~m} / \mathrm{s}$ and have a wavelength of 2 m . Calculate the frequency of these waves.

## Section B. This section has 5 questions. Each question carries 20 marks.

(Total
8. This question is about the motor effect of an electric current.

The figure represents a circuit connected to a metal swing ABCD. This metal swing can move freely.
a. Draw an arrow on the wire BC to show the direction of the current when the switch is closed.
b. Draw magnetic field lines between the poles of the magnet.
c. i. State what happens around the wire in the circuit when the switch is closed.

ii. Underline the instrument that can be used to test the presence of the answer you mentioned in $\mathbf{c}(\mathbf{i})$.
( voltmeter, plotting compass, ammeter, stopwatch )
d. When the switch is closed, the wire BC experiences a force.
i. Underline the correct answer:

This force acts (out of the page towards you / inside the page away from you).
ii. Which rule did you use to find the answer in d(i)?
$\qquad$
iii. State two ways to increase the size of this force.
e. Richard varies the current flowing in the circuit and records the size of the force as shown in the table below.

| Force F / N | 0 | 0.5 | 1.0 | 1.5 | 2.0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Current I / A | 0 | 0.2 | 0.4 | 0.6 | 0.8 |

i. Plot a graph of the force F ( y -axis) against the current I ( x -axis).
ii. From the graph it can be concluded that the Force and Current are $\qquad$ proportional.
iii. Use your graph to find the value of the current that produces a force of 2.5 N .


## 9. This question is about linear motion.

Kimberly drives her car on a journey. The graph shows how the speed of the car changes throughout the whole journey.
a. Use the graph to determine:

i. the speed while she drives at constant speed.
(2)
ii. the time Kimberly takes to decelerate, $\qquad$ (2)
iii. the acceleration during the first part of her journey.
$\qquad$
$\qquad$
b. Use the graph to calculate:
i. the distance covered by Kimberly during the first $\mathbf{5 0} \mathbf{s}$ of her journey,
$\qquad$
ii. the total distance covered during the whole journey,
$\qquad$
$\qquad$
c. Andrew investigates whether the force required to move an object at rest depends on the mass of the object. He is given a number of boxes, a string, a force sensor and a data logger. He attaches a string to a force sensor which is connected to a data logger and pulls the box until it starts to move.

i. Write down the following steps in order.

|  | No. |
| :--- | :---: |
| A graph of mass of boxes against force is plotted. |  |
| The smallest force to make the box move is recorded. | 1 |
| The apparatus is set up as shown above. |  |
| The experiment is repeated a few times, each time taking note of the mass <br> of the boxes and the force required to move them. |  |
| A box of known mass is pulled by the string attached to the force sensor. |  |

ii. Underline the correct answer:

The force required to move an object (increases / decreases / remains the same) as the mass of the object increases.

## 10. This question is about radioactivity.

a. Complete the following statements:
i. Proton number $\mathbf{Z}$ is the number of $\qquad$ in the nucleus of an atom.
ii. Nucleon number $\mathbf{A}$ is the number of protons and $\qquad$ in the nucleus of an atom.
b. Carbon-14 and carbon-12 are isotopes.
i. Explain the term isotopes. $\qquad$
ii. The proton number of carbon-12 is 6 . Fill in the following symbol of carbon- 12 by writing its proton and nucleon number.
$-\mathrm{C}$
c. A student observed that with the appropriate instruments a reading is obtained even though a radioactive source is not present.
i. This count is due to $\qquad$ radiation.
ii. Name two sources of this radiation.
iii. Name the instrument used to detect this radiation rate.
d. Paula and Andrea set up the necessary apparatus to find the half-life of an unknown radioactive substance $\mathbf{X}$. They notice that at the beginning of the experiment the apparatus gives a count of 16 counts per minute. When $\mathbf{X}$ is brought near the apparatus the count rate increases to 816 counts per minute.
i. What is the count rate due to the radioactive substance $\mathbf{X}$ only?
ii. Explain the term 'half-life'.
iii. After 5 minutes the count rate, due to the radioactive substance only, drops to 400 counts per minute. Find its half-life.
$\qquad$
iv. What would be the count rate, due to the radioactive substance only, after 10 minutes?
$\qquad$
v. Give the total count rate given by the apparatus after 10 minutes.
$\qquad$
11. This question is about Ohm's Law.
a. Complete the following: Ohm's law states that the $\qquad$ flowing through wire is directly proportional to the $\qquad$ across it, provided that
$\qquad$ remains constant.
b. Malcolm and Simone set up an experiment to investigate whether a filament lamp obeys Ohm's law. Two electrical components are left out as shown below.
i. Write the name of the two electrical components drawn below:


A $\qquad$
c. Malcolm and Simone plot the points on a graph grid as shown below.


Graph of I against V

i. Draw the best smooth curve through the plotted points on the graph grid.

Use the graph to find:
ii. the voltage across the filament lamp when a current of $\mathbf{1 . 5}$ A flows through it,
iii. the current flowing through the lamp when the voltage across it is $\mathbf{5} \mathbf{V}$,
iv. the resistance of the filament lamp at a voltage of 9 V using $\mathrm{V}=\mathrm{I} R$.
$\qquad$
$\qquad$
v. Underline the correct answer:

From the graph or otherwise one can conclude that the resistance of the filament lamp (changes / remains the same size).
vi. Does the filament lamp obey Ohm's law?
d. Malcolm notes that when the voltage across the filament lamp is set to a high lamp turns off.
i. What may happen to the filament of the lamp when this high voltage is applied ac it?
$\qquad$
ii. State what happens to the size of the current flowing through the filament lamp when a high voltage is applied across it.
$\qquad$

## 12. This question is about energy.

Julia and Mario set up an experiment to find the specific heat capacity of orange juice.
a. They use the following set up to carry out their investigation:

i. Label the diagram of the experimental setup.
ii. What are the three measurements Julia and Mario need in order to determine the specific heat capacity of orange juice?
$\qquad$
$\qquad$
iii. Which of the above apparatus will they use to ensure that the heat supplied by the immersion heater is evenly distributed throughout all the orange juice?
$\qquad$
iv. Write one precaution that they need to take during this investigation.
$\qquad$
$\qquad$
b. A block of lead of mass 5 kg is dropped from a height of 8 m . Calculate:
i. the initial potential energy of the lead block at the top,
$\qquad$
ii. the kinetic energy of the lead block just before it touches the ground, assuming no air resistance.
$\qquad$
iii. Complete the following energy flow diagram showing the energy changes when the lead block falls through a height of 8 m and hits the ground, assuming no air resistance.

c. When the lead block of mass 5 kg hits the ground, its temperature increases by $0.5^{\circ} \mathrm{C}$. Using the formula, $\mathrm{Q}=\mathrm{m} \mathrm{c} \Delta \theta$, calculate the increase in energy of the lead block given that the specific heat capacity of lead is $130 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$.
$\qquad$
$\qquad$
$\qquad$

