DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION
Department for Curriculum Management and eLearning
Educational Assessment Unit
Annual Examinations for Secondary Schools 2013
FORM 4
PHYSICS
TIME: 1h 30min

Name: \qquad Class: \qquad
Answer ALL questions in the spaces provided on the exam paper.
All working must be shown. The use of a calculator is allowed.
Where necessary take the acceleration due to gravity, g , to be $10 \mathrm{~m} / \mathrm{s}^{2}$.

Forces \& Motion	$\mathbf{W}=\mathbf{m g}$	$\mathbf{F}=\mathbf{m a}$
	$\mathbf{v}=\mathbf{u}+\mathbf{a t}$	$\mathbf{s}=\mathbf{u t}+1 / 2 \mathbf{a t}^{\mathbf{2}}$
	$\mathbf{s}=\frac{(\mathbf{u}+\mathbf{v})}{2} \mathrm{t}$	$\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
	$\text { Average speed }=\frac{\text { Total distance }}{\text { Total time }}$	Momentum (p) = mv
Electricity	Q = I t	$\mathbf{E}=\mathbf{Q} \mathbf{V}$
	$\mathrm{V}=\mathrm{I} \mathrm{R}$	$\mathbf{R}=\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}$
	$\frac{\mathbf{1}}{\mathbf{R}}={\frac{\mathbf{1}}{\mathbf{R}_{1}}}_{1}+\frac{\mathbf{1}}{\mathbf{R}_{2}}$	$\mathbf{R} \propto \frac{1}{\mathbf{A}} \quad \mathbf{R} \propto \mathbf{L}$
Waves	$\mathbf{v}=\mathbf{f} \boldsymbol{\lambda}$	$\mathrm{f}=\frac{1}{\mathrm{~T}}$
	$\mathrm{m}=\frac{\text { image distance }}{\text { object distance }}$	$m=\frac{\text { heightof image }}{\text { heightof object }}$
	$\eta=\frac{\text { real depth }}{\text { apparent depth }}$	$\eta=\frac{\text { speed of light(air) }}{\text { speed of light }(\text { medium })}$

Number	1	2	3	4	5	6	7	8	Total
Maximum mark	8	8	8	8	8	15	15	15	85
Actual mark									

	Total Theory	Total Practical	Final Mark
Actual Mark			
Maximum Mark	85	15	100

SECTION A

1. A guitar string vibrates with a frequency of 250 Hz .
a. Complete:
i. $\quad 250 \mathrm{~Hz}=250$ vibrations every \qquad . (1)
ii. We hear sounds with a frequency between \qquad Hz and \qquad Hz.
(1)

b. Calculate the:
i. periodic time of the sound waves produced,
\qquad
ii. wavelength of the sound waves, given that the speed of sound is $340 \mathrm{~m} / \mathrm{s}$.
c. Underline the correct answer:
i. Sound waves are (transverse, longitudinal).
ii. As the string is plucked harder, the sound waves produced have a greater (amplitude, frequency).
iii. Sound waves cannot travel through a (metal, vacuum).
2. Ryan drops a metal key and a feather from a height of 4 m .
a. The initial velocity of the key and the feather is \qquad . (1)

b. The key falls with an acceleration of \qquad $\mathrm{m} / \mathrm{s}^{2}$.
c. The feather takes longer to fall because of a force called \qquad . (1)
d. Calculate the:
i. time the key takes to fall,
\qquad
\qquad
ii. velocity of the key just before it hits the ground.
\qquad
\qquad
3. Three identical filament lamps L_{1}, L_{2} and L_{3} are connected as shown in Figure 1 be

Figure 1
a. i. $\quad \mathbf{L}_{1}$ and \mathbf{L}_{2} are connected in \qquad .
ii. $\quad \mathbf{L}_{2}$ and \mathbf{L}_{3} are connected in \qquad .
b. State which switch or switches need to be closed (switched on), so that only:
i. $\quad \mathbf{L}_{1}$ lights up,
\qquad
ii. $\quad \mathbf{L}_{2}$ and $\mathbf{L}_{\mathbf{3}}$ light up.
\qquad
c. With all switches closed, calculate the:
i. voltage across \mathbf{L}_{2},
\qquad
ii. charge present in $\mathbf{L}_{\mathbf{1}}$ given that a current of 2 A flows for 30 seconds.
\qquad
\qquad
(2)
d. Explain why \mathbf{L}_{1} will light brighter than \mathbf{L}_{2}.
\qquad
\qquad
4. In the 1430 s, Johann Gutenberg invented the periscope. It made use of mirrors and enabled people to see over a crowd. The periscopes that are used in submarines make use of prisms instead of mirrors.
a. Figure 2 shows a ray of light incident onto a glass prism.
i. Given that the critical angle of glass is 42°, which one of the rays A, B, C or D , shows the correct path followed by the light? \qquad

ii. Explain why the ray of light takes the path you have chosen.
iii. The refractive index of glass is 1.5 . Calculate the speed of light inside the glass prism, given that through air it travels at a speed of $3 \times 10^{8} \mathrm{~m} / \mathrm{s}(300000000 \mathrm{~m} / \mathrm{s})$.
b. Another simple but useful optical instrument is the magnifying lens. It can be used to examine closely very small objects.
i. Draw the missing rays in the ray diagram below.

ii. The image formed is enlarged, upright and \qquad .
5. Martina rides from her home to the village library to borrow some books.

The displacement-time graph describes her journey to the library and back home.

Time (s)
a. How far is the library from her home?
\qquad
b. How long does she:
i. take to arrive at the library?
\qquad
ii. stay at the library?
\qquad
iii. take to ride back home?
c. Calculate her average speed while riding:
i. to the library,
\qquad
ii. back home.
\qquad
d. Calculate the:
i. total distance she travels,
\qquad
ii. overall displacement.

SECTION B

6. Samantha uses the apparatus shown in Figure 3 to investigate the relationship acceleration and force.

She hangs a 0.05 N weight as shown and releases the glider. The data logger measures the acceleration of the glider between the two light gates. She obtains several readings by adding more weights each time. The results obtained are shown in the table below.

Force (N)	0	0.05	0.10	0.15	0.20	0.25	0.30
Acceleration (m/s $\mathbf{s}^{\mathbf{2}}$)	0	0.30	0.58	0.87	1.20	1.51	1.80

a. Plot a graph of acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$ on the y -axis against force (N) on the x -axis.
b. What is the relationship between acceleration and force?
\qquad
c. Why is acceleration plotted on the y-axis and not on the x-axis?
\qquad
d. State two precautions which she needs to take during this experiment.
\qquad
\qquad
e. Use the graph to find the:
i. acceleration of the glider when the force acting on it is 0.08 N ,
\qquad
ii. force acting on the glider which causes an acceleration of $1.30 \mathrm{~m} / \mathrm{s}^{2}$.
f. Using the graph or otherwise, calculate the mass of the glider in kg .
\qquad
g. How will the graph change if a glider with a greater mass is used?

www.StudentBounty.com
Homework Help \& Pastpapers
7. A light dependent resistor (LDR) is a special resistor. Its resistance changes the amount of light falling on it.

Figure 4
a. Figure 4 shows a light dependent resistor connected in a circuit. Given that in the dark the LDR has a resistance of $0.5 \mathrm{M} \Omega$, calculate the:
i. total resistance of the circuit,
\qquad
ii. current flowing through the circuit,
iii. voltage across the LDR.
b. Jake switches on a torch and places it vertically above the LDR in Figure 4.
i. On Figure 4 above, draw and label an instrument which he can use to measure the current flowing through the circuit.
ii. He decides to investigate how the vertical height of the torch above the LDR affects the current flowing through the circuit. Describe how he should carry out the experiment by including:

- an instrument to measure the height of the torch above the LDR,
\qquad
- the procedure he should follow,
\qquad
\qquad
\qquad
\qquad
\qquad
- how he should present his results,
\qquad
\qquad
- one precaution which he needs to take during this experiment.

8. X-rays are electromagnetic waves that form part of the electromagnetic spectrum.

Figure 5
a. Figure 5 shows X -rays incident onto a fractured arm.
i. Explain why X-rays can be used to detect fractures.
\qquad
\qquad
(2)
ii. Name one precaution taken when using X-rays.
\qquad
\qquad
iii. Why is ultrasound used instead of X-rays to monitor unborn babies?
\qquad
\qquad
b. Name three common properties of electromagnetic waves.
\qquad
\qquad
\qquad
c. Complete the missing information in the table below:

	Type of radiation	
i.	Ultraviolet	
ii.	Gamma	
iii.		Night vision cameras
iv.	Visible light	Heating food
v.		

d. Visible light is reflected by the Moon towards planet Earth. Given that the distance between the Moon and the Earth is 384400 km and that the speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$:

i. state the distance between the Earth and the Moon in metres,
ii. calculate the time it takes for the light to reach Earth.
\qquad
\qquad
\qquad
(2)

