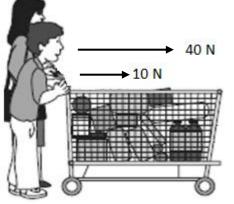
DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION

Name:		Class:
FORM 3	PHYSICS	TIME: 1h 30min
DIRECTORATE FOR QUA Department for Curriculum M Educational Assessment Uni Annual Examinations for S	t	Trace
		Stille

Answer all questions.

All working must be shown. The use of a calculator is allowed. Where necessary take acceleration due to gravity $g = 10 \text{ m/s}^2$.

You may find some of these equations useful:


Energy and Work	W = Fs $PE = mgh$	$E = Pt$ $KE = \frac{1}{2} \text{ mv}^2$
Forces	W = mg	Moment = Force x perpendicular distance
Pressure	$P = \frac{F}{A}$	P = h ho g
Density and Heat	Density $(\rho) = \frac{m}{V}$	$Q = mc\Delta\Theta$

For office use only:

Question No.	1	2	3	4	5	6	7	8	Total Mark	Practical Mark	Final Mark
Score											

SECTION A: Answer ALL questions. This section has a total of 40 marks.

SHIIIdenHOUNKY.com The diagram shows a lady and a child pushing a shopping trolley. The lady pushes 1. force of 40 N and the child with a force of 10 N.

machine.

What is the **total** horizontal force on the trolley? (a)

(1)

Calculate the work done to push the trolley a distance of (b) 80 m.

(2)

(c) On the diagram draw **two** other forces acting on the trolley.

(2)

Name **one** of these forces acting on the trolley. (d)

(1)

It takes 100 seconds to push the trolley a distance of 80 m. Calculate the power. (e)

(2)

(2)

2.(a) Complete the following sentences about the energy changes in a washing

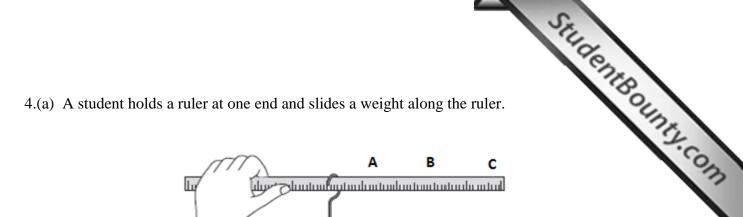
An electric motor in a washing machine is designed to transform (i)

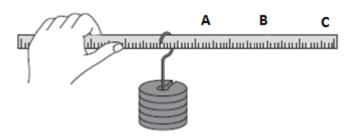
___ energy into _____ energy.

(2)

(ii) Some of the energy supplied to the motor is wasted as ______ energy and

_____ energy.


Would more or less energy be required to wash the clothes at a temperature of 60 °C instead (b) of 40 °C? Explain why.


(2)

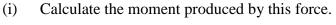
An 'A' rated washing machine uses an input power of 600 W to give 420 W of output power. (c) Calculate its efficiency.

(2)

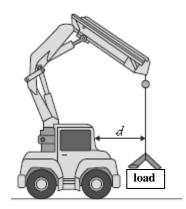
3.	The on it	diagram shows a set of shelves witl	n a number of jai	SHILL REPORT OF THE STATE OF TH	OUT
(a)	Com	plete the Principle of Conservation	of Energy.		
	Ener	gy is neither	_ nor		7
		but only changed	d from one	1.2 m	
	form	to another.	(2)		
(b)	(i)	The distance between the floor and 0.4 kg. Calculate the potential end this shelf.			•
	(ii)	This jar falls off the shelf accident the floor?	ally. What is the	ne kinetic energy of the jar just	(2 above
					(1)
	(iii)	Calculate the velocity of the jar jus	t before it hits the	ne floor.	
					(2)
	(iv)	What will happen to the velocity if	the same jar fall	ls from the top shelf?	
					(1)

(i)	What is meant by	the moment	of a	force?
-----	------------------	------------	------	--------

(1)


(ii) At which point A, B or C will the turning effect of the weight feel greatest? Give a reason for your answer.

(2)


(iii) In which direction will the moment of the weight act?

(1)

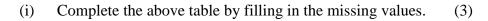
The diagram shows a mobile crane. The crane driver finds that (b) a load of 10 000 N would be safe at a distance, d, of 6.0 m.

(2)

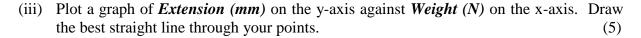
What might happen if a very large load is lifted by the crane? Explain why. (ii)

(2)

. Joanne collec	ts data from the Inte	ernet about planets	in the solar system,	Average temperature °C
Name of Planet	Distance from sun in millions of kilometres	Time taken for one orbit of the sun in years	Time taken to spin on its axis in hours	Average temperature °C
Mercury	60	0.24	1400	430
Venus	110	0.60	5800	470
Earth	150	1	24	20
Mars	230	2	25	- 20
Jupiter	780	12	10	-150
Saturn	1400	30	10	-180
Uranus	2900	84	17	-220
Neptune	4500	165	16	-230

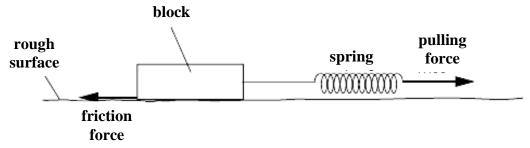

Name the force which keeps planets in their orbits.	(1)
What is the name of the galaxy which contains our Solar System?	
Pluto is missing from the above table. Explain why.	(1)
Which two planets have the same length of day?	(1)
	(1)
Which planet has the longest year? Explain why the temperature on Neptune is very cold.	(1)
What form of energy would be very useful to use in space? Name one advantage of usir source.	(1) g this
	(2)

SECTION B: Answer ALL questions. This section has a total of 45 marks.


This question is about Forces. 6.

Student Bounty.com Jeffrey hangs different weights at the end of a spring. Each time he measures the length of (a) spring. The results are shown below.

Weight (N)	0	1	2	3	4	5	6	7
Length (mm)	40	48	60	64	72	80	88	96
Extension (mm)	0	8						

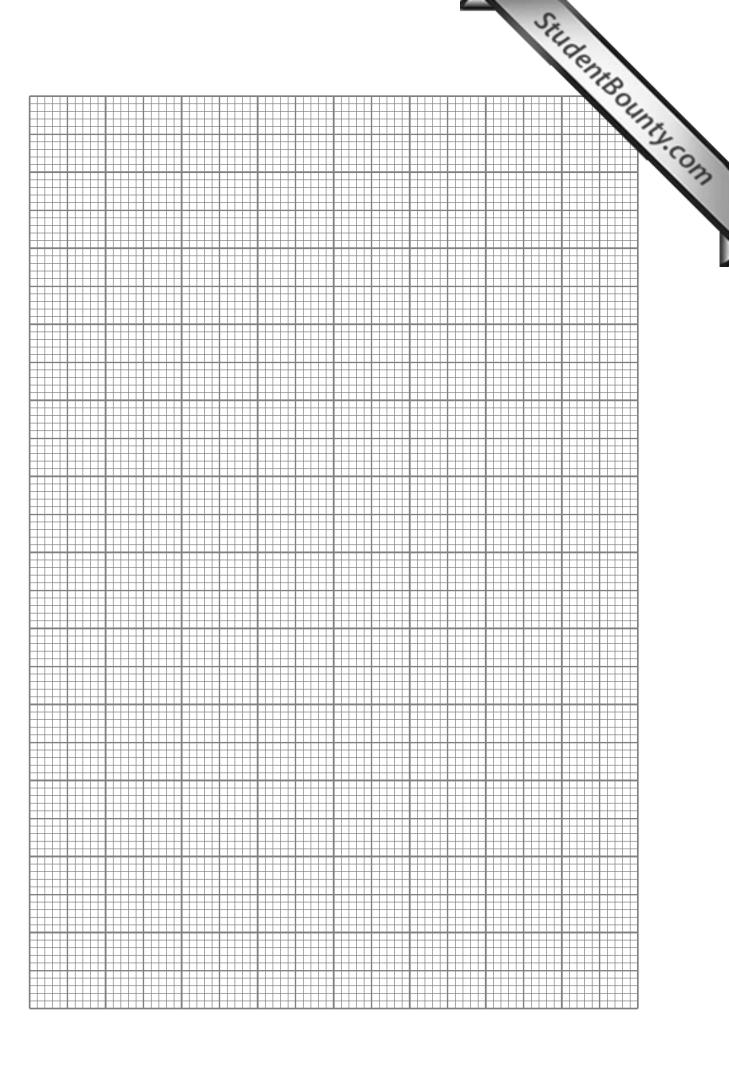


(ii) What is the original length of the spring? (1)

(iv) Jeffrey reads one of the **lengths** incorrectly. Which one is it? _____ (1)

The **same** spring is now attached to a block resting on a rough surface, as shown below. (b)

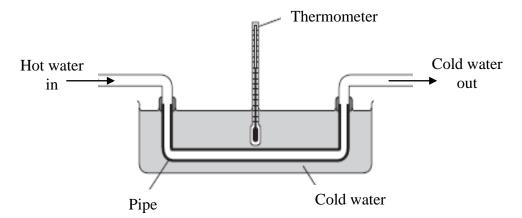
(i) As the pulling force is increased, the block just starts to move to the right when the spring is 68 mm long. What is the extension of the spring when it is 68 mm long?


(1)

(ii) The same spring is now used to pull a much heavier block. The spring becomes permanently deformed. Explain why.

(2)

(iii) Name **two** ways in which this frictional force can be reduced.


(2)

7. This question is about Heat.

The diagram below shows a simple heat exchanger. Heat is transferred from the ho (a) the cold water through the walls of the pipe.

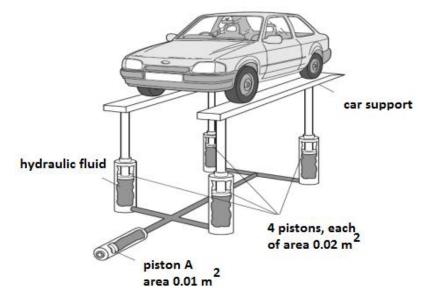
Student Bounty.com Rachel and Caroline investigate whether the efficiency of a heat exchanger depends on the material used to make the pipe. The students test three different materials.

Name the **main** process by which heat is transferred from the hot water inside the pipe to the cold water in the tank.

(1)

The results obtained are recorded in the table below.

Material	Initial temperature of cold water (°C)	Final temperature of the cold water (°C)	Change in temperature (°C)
Copper	20	36	
Glass	20	23	
Plastic	20	21	


- Fill in the missing values in the above table. (ii) (3)
- (iii) Name **one** precaution to obtain accurate results.

(2)

(iv) Use the above table to choose which one of the three materials is the best heat exchanger. Give a reason for your answer.

(2)

The density of water is 1 g/cm³ and the volume of water is 15 000 cm³. Calculate its (v) mass.

(i)	Calculate the pressure caused by a force of 1000 N on piston A of area 0.01 m ² .
	(2)
(ii)	What is the pressure at each of the four pistons holding the car? Explain why.
	(2)
(iii)	Calculate the force on each piston of area 0.02 m ² .
	(2)
(iv)	Calculate the <u>total</u> upward force provided by the hydraulic lift on the car.
	(2)
(v)	The weight of the car is 7000 N. Is the hydraulic lift able to lift the car? Give a reason for your answer.
	(2)