\qquad Class: \qquad

Mark

Instructions to Candidates

- Answer ALL questions.
- This paper carries a total of $\mathbf{2 0}$ marks. Each question carries $\mathbf{1}$ mark.
- Calculators and protractors are not allowed.

No.	Question	Space for
1	Underline the one that is equal to: 36 A. $15 \times 2+3$ B. $(12+6) \times 2$ C. $10+2 \times 3$	
2	Monica is packing 23 cakes into boxes. Each box holds 4 cakes. What is the smallest number of boxes that Monica needs to pack all the cakes? \qquad boxes	
3	Solve: $3 x-7=17$ $x=$	
4	Paul has 46 marbles and Alan has 54 marbles. How many marbles should Alan give to Paul so that they both have the same number of marbles? \qquad marbles	
5	Twelve children share $\mathbf{3}$ pizzas between them. Underline the fraction of pizza that each child will get. A. $1 / 2$ B. $1 / 8$ C. $1 / 4$ D. $3 / 8$	
6	Estimate the area of the shape in unit squares. \square unit squares	
7	Three copybooks cost the same as $\mathbf{1}$ file. Two files and one copybook cost the same as \qquad copybooks.	

No.	Question	Space for
8	Underline the shape that has no parallel lines. A. Trapezium B. Rhombus C. Kite	
9	Joanne started a fun run at 10:15 am. She finished at 11:05 am on the same day. How many minutes did it take Joanne to finish the fun run? \qquad minutes	
10	Underline the correct transformation of triangle T to S . A. Reflection in the y-axis. B. Rotation of 90° clockwise about the origin. C. Enlargement by scale factor 2 about the origin.	
11	The bearing of H from \mathbf{W} is 260°. Underline the correct bearing of W from \mathbf{H} : A. 080° B. 100° C. 130°	
12	Mark has 5 dogs and a 15 kg bag of dog food. Each dog eats $\mathbf{1 0 0} \mathbf{g}$ of dog food each day. The bag of dog food will last for \qquad days.	

No.	Question	Space for
13	Use $\mathrm{A}=\pi \mathrm{r}^{2}$ to estimate the area of a circle with a radius of 4 m . \qquad m^{2}	
14	The following are the ages (in years) of five athletes. $15, \quad 22, \quad 18, \quad 26, \quad 20$ What is their median age?	
15	Underline the size of the exterior angle of a regular polygon with $\mathbf{1 2}$ sides. A. 15° B. 30° C. 45° D. 60°	
16	A rectangle measures 4.5 cm by 8 cm . A square has the same area as the rectangle. Work out the length of a side of the square.	
17	Work out giving your answer in its lowest terms: $\frac{2}{9}+\frac{1}{9}$	
18	60 students voted on how they spend their free time. The percentages in the pie chart show how the students voted. How many students prefer watching TV?	
19	Work out the value of $\mathbf{3}(\boldsymbol{h}+\boldsymbol{m})$ when $\boldsymbol{h}=9$ and $\boldsymbol{m}=11$.	
20	Owen bought 4 kg of bananas at $€ 1.75$ per kg. How much did he have to pay?	

Question	1	2	3	4	5	6	7	8	9	10	11	12	Main	Non Calculator	Total

Name: \qquad Class: \qquad

Instructions to Candidates

- Answer ALL questions.
- This paper carries a total of $\mathbf{8 0}$ marks.
- Calculators are allowed. Show all necessary working.

1. Using your calculator, work out:
a) $30-7 \times 2.6=$ \qquad
b) $35+\sqrt{225}$ \qquad
c) $100-4^{3}=$ \qquad d) $\frac{1}{2}(3.2+7)=$ \qquad
2. Match the given expressions to their answers. The first one is done for you.

3. The following are the sea temperatures in degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$ during each in
16, 16, 16, 17, 20,
23,
26,
27,
26,
24,
22,

Work out:
a) The modal sea temperature.
\qquad
b) The range in sea temperatures.
\qquad
c) The mean sea temperature for 2010 .
\qquad
4. a) John bought a calculator for $€ 8$. He then sold it to his friend Anna for $€ 10$. Work out:
i) The profit John made in selling the calculator.
$€$ \qquad
ii) His profit as a percentage of the original cost.
\qquad \%
b) Paul buys a computer costing $\boldsymbol{€} \mathbf{6 4 0}$. Paul pays $\mathbf{2 5 \%}$ deposit.
i) Write 25% as a fraction.

ii) Work out the deposit that Paul pays.
\qquad
iii) Work out the remaining amount of money that Paul has to pay.
\qquad
\qquad
5. The pie chart shows the favourite sport of a group of 15 year old students.

The table below shows information about each sector (part) of the pie chart.

Complete the table filling in the missing information.

Sport	ANGLE IN PIE CHART	NUMBER OF STUDENTS
TENNIS	30°	
NETBALL	60°	30
SWIMMING		
BASKETBALL	60°	
FOOTBALL		60

6. Alex is making this brick pattern.

Pattern 1
Pattern 2
Pattern 3
Pattern 4
a) Draw pattern 4 in the space provided above.
b) Fill in the table below.

Pattern	1	2	3	4	5	
Bricks Used	1	4				36

c) Pattern $\mathbf{8}$ is made up of \qquad bricks.
d) Alex needs 100 bricks to make pattern \qquad .
7. The diagram shows a netball court with measurements given in feet.

a) Use the graph to complete the following:
i) \qquad feet $=6 \mathrm{~m}$
ii) 50 feet
$=$ \qquad m
iii) 100 feet
$=$ \qquad m
b) Work out the area of the netball court in m^{2}.
\qquad m^{2}
c) The rectangle in the middle of the court is 30 feet long.
i) $\quad 30$ feet $=$ \qquad m
ii) Work out the area of this rectangle correct to the nearest m^{2}.

Area $=$ \qquad m^{2}
8. A rectangular field is $(2 x-3) \mathrm{m}$ long and $\boldsymbol{x} \mathrm{m}$ wide.
a) Write down an expression for the perimeter of the field. Simplify your answer.
b) The perimeter of the field is 36 m .

Form an equation and solve it to find the value of \boldsymbol{x}.
$x=$ \qquad m
c) Use your answer to question (b) to work out the length of the field.
\qquad m
9. Alison had a coin and a spinner. She tossed the coin and turned the spinner together.
a) Complete the possibility space below.

		Spinner				
		1	2	3	4	5
EI	Heads	H1			H4	
	Tails		T2			T5

Work out the probability that:
b) Alison gets heads on the coin and an odd number on the spinner.
c) Alison gets tails on the coin and a number less than 3.
10. The regular hexagon $A B C D E F$ is drawn inside the circle with centre O. The hexagon is made up of six congruent equilateral triangles.

Work out:
a) Angle AOB.
b) Angle ABO.
\qquad ${ }^{\circ}$
\qquad \circ
c) The size of one interior angle of the hexagon.
 (E.g.: Angle ABC)
d) The sum of the interior angles of the hexagon.
e) Underline the correct answer. $\mathbf{A B C D}$ is a:
Rhombus
Kite
Trapezium
Rectangle
11. a) Cuboid \mathbf{A} is 6 cm long, 12 cm wide and 9 cm high.

Work out the volume of cuboid A .

Volume $=$ \qquad cm^{3}
b) Cuboid B has a volume of $512 \mathrm{~cm}^{3}$. Work out its height h.

11. c) Amy designs a cube with sides 4.5 cm . Work out:
i) The volume of the cube.
ii) The area of one face of the cube.
\qquad cm^{2}
iii) The total surface area of the cube.
12. Fill in below.

a) Triangle \qquad is a reflection of triangle T in the line $\boldsymbol{x}=-2$.
b) Triangle D is an enlargement of triangle T by scale factor \qquad .
c) Triangle \qquad is a rotation of triangle T by \qquad ${ }^{\circ}$ about the origin.
d) Triangle B is a translation of triangle T by \qquad squares right and 8 squares \qquad .
e) Triangles \qquad and \qquad are similar.
f) Triangles \qquad and \qquad are congruent.

BLANK

PAGE

