Name:

\qquad Class: \qquad

Mark

INSTRUCTIONS TO CANDIDATES

- Answer all questions. There are 20 questions to answer.
- Each question carries 1 mark.
- Calculators, protractors and other mathematical instruments are not allowed.
- You are not required to show your working. However space for working is provided if you need it.

No.	Question	
$\mathbf{1}$	Work out. $\mathbf{4}^{2}-\mathbf{2}^{4}=\ldots$	
$\mathbf{2}$	Write down the two prime numbers between 30 and 40.	
$\mathbf{3}$	Subtract 499 from 1000. $\mathbf{4}$ $\mathbf{5}$ If the first of January is a Thursday, what day will the first of February be?	
$\mathbf{5}$	Work out the number of minutes in one day.	
$\mathbf{6}$	The mean of two numbers is 21. The range is 6. Work out the value of the larger number. does it take the train to travel 400 km?	
An aeroplane leaves Malta International Airport at quarter to nine and arrives at Gatwick airport at 11.35 (Malta time). How long does the flight take?		

No.	Question	Space for Work
9	Write down the largest possible even number using each of the digits $8,3,2$ and 1 only once.	
10	Work out the value of $2^{3} \times \sqrt{2 \frac{1}{4}}$	
11	Work out the value of $20^{2}-19^{2}$	
12	a, b and c are three different fractions. Write three possible values of a, b and c such that $a+b+c=1$ $a=$ \qquad , $b=$ \qquad , $c=$ \qquad	
13	Work out $20 \times 7.28+30 \times 7.28+50 \times 7.28$	
14	The distance of the earth from the sun is 1.488×10^{11} metres. Change this distance to kilometres. Give your answer in standard form.	
15	Work out the difference between 10% of $€ 143$ and 10% of $€ 93$.	
	Difference $=€$	

DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION
Department for Curriculum Management and eLearning
Educational Assessment Unit
Annual Examinations for Secondary Schools 2013

FORM 5
MATHEMATICS SCHEME A
TIME: 1h 40min
MAIN PAPER

1	2	3	4	5	6	7	8	9	10	11	12	13	Main	NC	Total

Name: \qquad Class: \qquad
Calculators are allowed but the necessary working must be shown. Answer all questions.

1 Mr and Ms Borg are buying a washing machine during a sale.

Work out the percentage reduction.

2 These four numbers are written in standard form.
7.6×10^{3}
1.57×10^{6}
9.8×10^{-3}
4.9×10^{-2}
(i) Write down the largest number. \qquad
(ii) Write down the smallest number. \qquad
(iii) Write 4.9×10^{-2} as an ordinary number. \qquad
(iv) Multiply 7.6×10^{3} by 1.57×10^{6}. Give your answer in standard form.
\qquad

3 (i) Two triangles are congruent. Underline the statement that is true.
A. The areas of the two triangles are always equal.
B. The areas of the two triangles are sometimes equal.
C. The areas of the two triangles are never equal.
(ii) In the diagram the straight lines PRT and QRS intersect at R. PQ is parallel and equal to $S T$. Prove that R is the midpoint of PT.

4 The heights of six boys are $1.53 \mathrm{~m}, 1.49 \mathrm{~m}, 1.60 \mathrm{~m}, 1.65 \mathrm{~m}, 1.90 \mathrm{~m}$ and 1.43 m .
(i) Work out the mean height of the six boys.

Mean = \qquad metres
(ii) Five other boys join the six boys to form a football team. The mean of these five boys is 1.55 m . Work out the mean of the eleven boys. Give your answer correct to $\mathbf{2}$ decimal places.

Mean = \qquad metres

Name: \qquad Class: \qquad

5 (i) The angles of a triangle are x°, y° and z°. Write a formula for x in terms of y and z.
$x=$ \qquad
(ii) The formula

$$
c=\sqrt{a^{2}+b^{2}}
$$

is used to find the length of the hypotenuse, c, in a right-angled triangle.
(a) Work out the value of c when $a=12 \mathrm{~cm}$ and $b=35 \mathrm{~cm}$.

$$
c=
$$

\qquad cm
(b) Make a the subject of the formula.

$$
a=
$$

6 A surveyor is 125 metres from the foot of a building. He measures the anglo elevation of the top of the building as 15°. The sighting device is 1.8 metres ab ground.

(i) Work out the height of the building, correct to $\mathbf{1}$ decimal place.
height $=$ \qquad metres
(ii) The surveyor moves 30 metres closer to the building. Work out the new angle of elevation, correct to the nearest degree.

Angle of elevation $=$ \qquad ${ }^{\circ}$
\qquad
\qquad

7 Simplify $\frac{1}{2 x}+\frac{x-3}{x^{2}-2 x}$

8 The functions f and g are defined by

$$
f(x)=3 x^{2}+2 x \text { and } g(x)=3 x+2
$$

(i) Find the value of x for which $f(1)=g(x)$.
$x=$ \qquad
(ii) Determine $g^{-1}(x)$.

$$
g^{-1}(x)=
$$

\qquad
(iii) Find the values of x given that $f(x)=g(x)$.
\qquad
$=$

9 (i) Explain why triangles PQR and LMN are similar.

(ii) A water company manufactures two similar bottles. The smaller bottle has a volume of 250 ml and the larger bottle has a volume of 2 litres. The height of the smaller bottle is 20 cm . Work out the height of the larger bottle.

Height $=$ \qquad cm

10 The mass, M, of a solid sphere is directly proportional to the cube of its ra A sphere with radius 2 cm has a mass of 100 grams. Work out
(i) the mass of a sphere whose radius is 1.2 cm

Mass $=$ \qquad grams
(ii) the radius of a sphere having a mass of 34.3 grams.

Radius $=$ \qquad cm

11 (i) Mark says: "For any number n, then n^{2} will always be positive." Is Mark correct? Give a reason for your answer.
\qquad
\qquad
(ii) Maria says: "The square root of a number is always smaller than the number." Is Maria correct? Give a reason for your answer.
\qquad
\qquad
(iii) Solve: $\begin{aligned} & x^{2}+y^{2}=9 \\ & x-y+3=0\end{aligned}$
$x=$ \qquad $y=$ \qquad

12 The table below shows the ages of people in a basketball club.
(i) Complete the cumulative frequency table, below on the right.

Age (years)	Frequency
$10-19$	12
$20-29$	20
$30-39$	32
$40-49$	15
$50-59$	12
$60-69$	5
Total	$\mathbf{9 6}$

Age (y years)	Cumulative Frequency
<10	0
<20	12
<30	
<40	
<50	
<60	
<70	

(ii) On the graph paper (below) draw the cumulative frequency graph.

Frequency
(iii) Use the graph to complete the box plot.

13 (i) Complete the table for $y=\frac{12}{x}+x-6$.

\boldsymbol{x}	$\mathbf{1}$	$\mathbf{1 . 5}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
y	7		2	1					

(ii) On the graph paper (below) draw the graph of $y=\frac{12}{x}+x-6$ for values of x from 1 to 8 .

Y

13 (iii) Use the graph to
(a) find the minimum value of $\frac{12}{x}+x-6$
(b) find the roots of the equation $\frac{12}{x}+x-8.5=0$
\qquad

$$
x=
$$

END OF PAPER

