JUNIOR LYCEUM AND SECONDARY SCHOOL

ANNUAL EXAMINATIONS 2009

Directorate for Quality and Standards in Education Educational Assessment Unit

CHEMISTRY

FORM 5

)L TIME: 1h 45min

Class:

Name: _____

Useful Data: A copy of the Periodic Table is printed below.

Relative atomic mass may be taken as: H=1 C=12 N=14 O=16 Na=23 Al=27 S=32One mole of any gas occupies 22.4 dm³ at standard temperature and pressure State symbols are expected to be included in all chemical equations.

PERIODIC TABLE

1	2											3	4	5	6	7	0
							$\overset{1}{\overset{1}{\overset{1}{\overset{1}{}}}}$										\mathbf{H}_{2}^{4}
\mathbf{L}_{3}^{7}	9 Be 4											11 B 5	12 C 6	14 N 7	16 O 8	19 F 9	20 Ne 10
23 Na 11	24 Mg 12											27 Al 13	28 Si 14	31 P 15	32 S 16	35.5 Cl 17	40 Ar 18
39 K 19	${\overset{40}{{f Ca}}}_{20}^{40}$	45 Sc 21	48 Ti 22	51 V 23	52 Cr 24	55 Mn 25	56 Fe 26	59 Co 27	59 Ni 28	63.5 Cu 29	65 Zn 30	70 Ga 31	73 Ge 32	75 As 33	79 Se 34	80 Br 35	⁸⁴ Kr ₃₆
85 Rb 37	88 Sr 38	89 Y 39	91 Zr 40	93 Nb 41	96 Mo 42	99 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	$\overset{112}{\underset{48}{\overset{112}{\overset{}}}}}$	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 Tl 81	207 Pb 82	209 Bi 83	210 Po 84	210 At 85	222 Rn 86

relative atomic mass symbol atomic number

Marks Grid [For Examiners use only]

Question	Section A							Section B			
N°.	1	2	3	4	5	6	7	8	9		
Max Mark	12	10	10	8	10	10	20	20	20	Theory Total	
Actual Mark											

85% of Theory Paper	15% Practical	100% Final Score

Section A: Answer ALL questions in this section, using the space provided. This section carries 60 marks.

- StudentBounty.com 1a. Draw a dot/cross diagram, showing only the outer electron shells, to show the bonding in a molecule of hydrogen chloride.
 - b. Draw dot/cross diagrams, showing all electron shells, to show the electronic structure and charge of:
 - (i) the **metal ion** in sodium iodide.
 - (ii) the **non-metal ion** in potassium chloride.
- (i) Name the test that can be used to identify the cations in potassium chloride and c. sodium iodide.
 - (ii) Give the result/observation for each salt.

- [3]
- d. (i) Name the reagent(s) that can be used to identify/distinguish the **anions** in solutions of potassium chloride and sodium iodide.
 - (ii) Give the observation for each salt.

_____ [4]

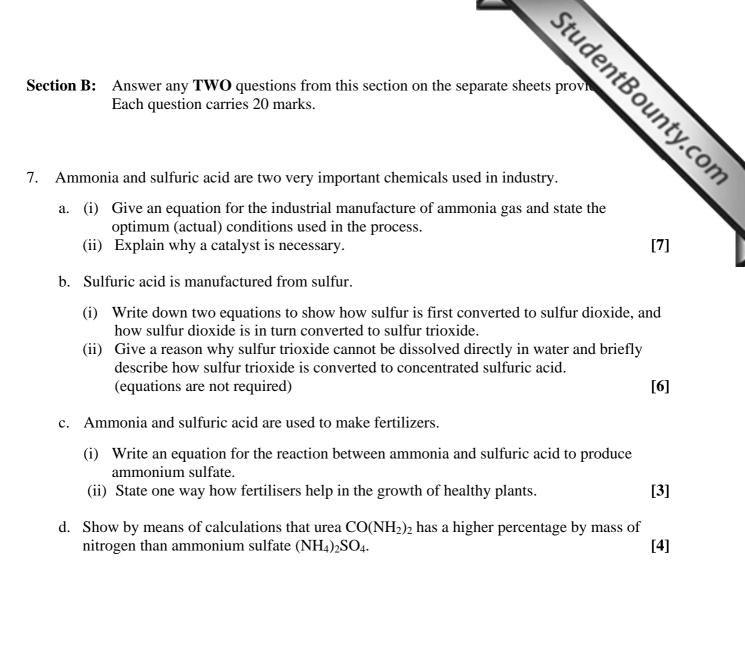
[2]

[11/2]

[1¹/2]

StudentBounty.com 2. The following equation represents a system in dynamic equilibrium. $H_{2(g)}$ + $I_{2(g)}$ \Longrightarrow $2HI_{(g)}$ $\Delta \mathbf{H} =$ a.(i) What would be the effect of increasing the temperature on the rate/attainment of equilibrium? (ii) Explain your answer to question a.(i) in terms of particle collisions. [3] b.(i) What would be the effect of increasing the temperature on the equilibrium position? (ii) Explain your answer to question b.(i) in terms of Le Chatelier's principle. [3] c.(i) What would be the effect of increasing the pressure on the rate/attainment of equilibrium? (ii) Give a reason for your answer to question c.(i). (iii) Would an increase of pressure have any effect on the equilibrium position? (iv) Give an explanation for your answer to question c.(iii).

- 3. Magnesium and Calcium are both found in Group 2 of the Periodic Table and there similarities in properties.
 - State one similarity in their physical properties. a.
- StudentBounty.com Magnesium and calcium can be shown to be chemically similar by reacting both metals b. with the same reagent.
 - (i) State the **name** of **one** reagent with which both magnesium and calcium react.
 - (ii) What would you **observe** during the reactions that shows that both metals have similar chemical properties?
 - (iii) Write a balanced equation for the reaction that takes place between one of the metals and the reagent you named in question b.(i).


[4]

- c. Hardness of water is caused by soluble compounds of magnesium and calcium. Limestone is a form of calcium carbonate. Water from limestone districts is usually temporary hard.
 - (i) State the name of the compound formed by the action of rain water on limestone and is responsible for making water temporary hard.
 - (ii) Write an equation to show the formation of temporary hardness by the action of rain water on limestone.
 - (iii) State the name of one compound that causes permanent hardness.
 - (iv) State **one** method that removes **both types** of hardness of water.

[5]

a.	Unless protected, objects made of iron quickly rust.
(i)	Which two substances must be present for iron to rust?
(ii)	Unless protected, objects made of iron quickly rust. Which two substances must be present for iron to rust? State one method used to prevent rusting.
b.	An iron nail is placed in copper (II) sulfate solution. Due to its position in the Activity Series, iron displaces copper.
(i)	State one thing that would be seen after several hours.
(ii)) Write an ionic equation, omitting spectator ions, for this reaction.
So a.	a) State whether the iron metal is oxidised or reduced, giving a reason for your answer. [5] dium hydroxide solution is frequently used in the chemistry laboratory. Give the name of one indicator that can be added to sodium hydroxide solution and state the
So a.	[5] dium hydroxide solution is frequently used in the chemistry laboratory. Give the name of one indicator that can be added to sodium hydroxide solution and state the colour it would give.
So a.	[5] dium hydroxide solution is frequently used in the chemistry laboratory. Give the name of one indicator that can be added to sodium hydroxide solution and state the colour it would give. indicator: colour: [2] Sodium hydroxide solution can be used to prepare salts by reaction with a dilute acid.
So a.	[5] dium hydroxide solution is frequently used in the chemistry laboratory. Give the name of one indicator that can be added to sodium hydroxide solution and state the colour it would give. indicator: colour: [2]
So a.	[5 dium hydroxide solution is frequently used in the chemistry laboratory. Give the name of one indicator that can be added to sodium hydroxide solution and state the colour it would give. indicator: colour: [2 Sodium hydroxide solution can be used to prepare salts by reaction with a dilute acid. (i) Calculate the molar concentration of sodium hydroxide solution where 2.0g of sodium
So a. b.	[5] dium hydroxide solution is frequently used in the chemistry laboratory. Give the name of one indicator that can be added to sodium hydroxide solution and state the colour it would give. indicator: colour: [2] Sodium hydroxide solution can be used to prepare salts by reaction with a dilute acid. (i) Calculate the molar concentration of sodium hydroxide solution where 2.0g of sodium hydroxide was dissolved in 250cm ³ solution. (ii) What is the name of the practical method that is used to react sodium hydroxide
So a. b.	
So a. b.	

•	Give the name of the process by which diesel (gasoline) is obtained from crude	OUT						
b.	Give the name of the process by which diesel (gasoline) is obtained from crude The word equation below represents the process by which ethene is obtained from diesel in industry. Diesel \rightarrow octane + ethene							
	$Diesel \rightarrow octane + ethene$							
	(i) Write the formula equation for this process.							
	(ii) Name this process	[3]						
c.	In the laboratory, ethene can be obtained from ethanol.							
	(i) Give the name of this type of reaction.							
	 (ii) Give the name of a reagent that reacts with ethanol to produce ethene and state or important condition for this reaction to occur. 	ne						
		_[3]						
d.	Describe a chemical test for ethene and give an equation for the reaction.							
	(i) test:							
	(ii) equation:	[3]						

- 8. a. Describe the industrial electrolysis of brine (concentrated sodium chloride solution) using a membrane cell. In your answer include a **labelled outline diagram** of the membrane cell, name the **three** products and give equations for the electrode reactions. [12]
 - b. State **one large scale** use for each of the three products.

[3]

[5]

- c. Another important industrial application of electrolysis is the extraction of aluminium.
 - (i) Write the ionic half equation for the discharge of aluminium ions and use it to calculate the number of Faradays required to deposit 1kg of the metal.
 - (ii) Give **one** large scale use of aluminium and state the property on which this use depends.

	Stud	
	(CI)	supply Com
9.	The following statements refer to the chemistry of carbon and its compounds.	Enz.
	a. Methane burns harmlessly in a plentiful supply of air to form two gases but if the air is limited, then a poisonous gas or a black solid is produced.	supply Com
	(i) Explain the difference between these two combustion reactions.(ii) State what would be seen in each case and name the products described in the	
	statement.	
	(iii) Write an equation for burning methane in a plentiful supply of air.	[10]
	b. There is only one hydrocarbon with the molecular formula C_2H_6 but there are two iso with the molecular formula C_4H_{10} .	omers
	(i) Give the name and structural formula for C_2H_6 .	r <i>e</i> 1
	(ii) Give the name for C_4H_{10} and the structural formulae for its two isomers.	[5]
	c. Carbon exists in two forms – diamond and graphite, which have different physical properties.	
	What are these two different forms called?	
	Describe two physical differences between them.	[5]

End of Exam Paper _____