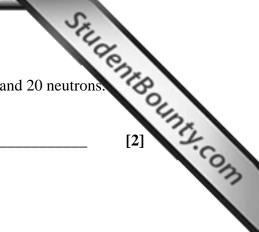
JUNIOR LYCEUM AND SECONDARY SCHOOL **ANNUAL EXAMINATIONS 2009**

				NNUA orate for Edu	· Qua		nd Sta	ndard	s in E	2009 Educat	ion		E: 11		OK
ORM 3					CH	EMI	STR	Y			,	ΓIM	E: 11	h 301	nin
me:									Cl	ass:					
1 2					PER	IODI	С ТА	BLE		3	4	5	6	7	0
					1 H										He
7 Be 4					1					B 5	12 C	14 N 7	16 O 8	19 F 9	20 Ne 10
										27 Al 13	28 Si 14	31 P 15	32 S 16	35.5 Cl	40 Ar
23		48	51 52 V C 1	r Mn	56 Fe	59 Co 27	59 Ni 28	63.5 Cu	65 Zn 30	70 Ga	73 Ge 32	75 As 33	79 Se 34	80 Br 35	84 Kr 36
Na Mg	45 Sc 21	Ti	23 24	1 25										105	
Mg 11 12 12 140 K Ca	Sc 21	Ti 22 91 Zr I		6 99 Io Tc	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te	127 I 53	131 Xe 54

symbol

atomic number


Marks Grid [For Examiners use only]

Question	Section A							Section B			
N°.	1	2	3	4	5	6	7	8	9		
Max Mark	10	10	10	10	10	10	20	20	20	Theory Total	
Actual Mark											

85% of Theory Paper	15% Practical	100% Final Score			

Section A: Answer **ALL** questions in this section, using the spaces provided. This section carries 60 marks.

					8	
Section		ver ALL questions in section carries 60 m		sing the spaces pro	vided.	[3]
1. a.	Fill in wi	th the words: solver	nt, solute, solut	ion.		12
	When cry	stals of copper sulfa	ate are dissolved	l in water, the mixt	ure formed is called	OM
	a	Water is t	hev	while copper sulfate	e is the	[3]
b.		elt into liquids while perature at which:	liquids boil to	become gases.		
	(i) a so	olid melts is called			·	
	(ii) a lic	quid becomes a gas i	s called			[2]
						[4]
c.		xtures can be separaten be separated by fil t	•	. Underline which o	of the mixtures	
	(i) (ii) (iii) (iv)	sand and water sand and marble calcohol and water sugar and table sal	-			[2]
d.	Sea water	r is a mixture of salts	s and water. W	hen sea water is bo	iled, the water is	
	turned int	to	This can be	e	back into	
	water and	l collected as		_ water.		[3]
2. a.	Most eler	ments are either meta	als or non-metal	ls. Give one examp	ple of each.	
	Metal: _			Non-metal		[2]
b.	Fill in the	e space with the word	d metals or no r	ı-metals.		
	(i)	Elements that con-	duct both heat a	and electricity are us	sually	
	(ii)	Most elements wit	th a low melting	g point are	·	
	(iii)	Most	can be	e hammered to prod	duce thin sheets.	
	(iv)	Most	are sh	iny when freshly cu	ut.	
	(v)	Most solid	are	brittle and break ea	asily.	[5]
c.	Write dov	wn the name of:				
	(i)			water		
	(ii) (iii)	a non-metallic eler	-	the air with hydrogen	·	
	` /			·		[3]

3. a. An atom of the element potassium, symbol K, contains 19 protons and 20 neutrons. Write down its:

(i) atomic number _____ (ii) mass number _____

- b. Atoms of the **same** element always contain the same number of _____ and the same number of electrons, but not necessarily the same number of ______.
- c. A normal sample of chlorine includes amounts of two different atoms with symbols 35 Cl and 37 Cl. Fill in the table below: 17

	³⁵ Cl	³⁷ Cl 17
Number of protons		
Number of electrons		
Number of neutrons		

[3]

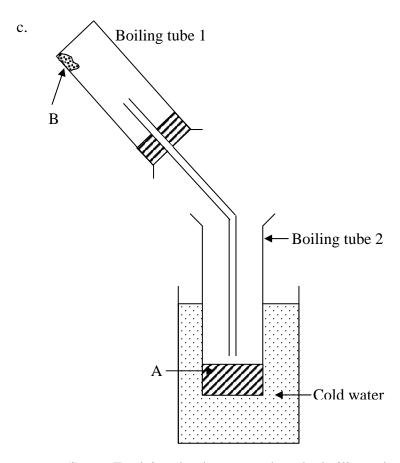
- d. (i) Atoms of the same element with different mass numbers are called _____.
 - (ii) Chlorine is an example of such an element.

Another example is ______.

[2]

e. In a book of chemical data, the mass number of chlorine is given as 35.5. Use this data to state which of the two atoms of chlorine in question c. is more abundant.

[1]


[2]

- This question is concerned with the hydrated salt magnesium sulfate, MgSO₄, 7H₂O.
 - Work out the molar mass of:
 - 1 mole of water (i)
 - (ii) 7 moles of water
 - (iii) 1 mole of anhydrous magnesium sulfate
 - 1 mole of hydrated magnesium sulfate. (iv)

[8]

b. Use your answer to question a. to calculate the percentage composition by mass of water of crystallization in hydrated magnesium sulfate.

[4]

- (i) Explain what happens when the boiling tube containing the hydrated salt is heated strongly. Together with your explanation, your answer should include:
 - the name of the substance collected at A.
 - the name of the residue left in the boiling tube at B

[6]

- (ii) Give 1 reason why:
 - Boiling tube 1 must be titled with its mouth downwards.
 - Boiling tube 2 is surrounded with cold water.

[2]

Describe a method that can be used for the laboratory preparation of oxygen from hydrogen peroxide.

Your answer should include:

- an explanation of the procedure to be adopted
- a well-labelled diagram of the apparatus
- the name of any other substance that is necessary for the reaction to take place.

[8]

- b. Magnesium ribbon burns in air with a white flame.
 - Write down an equation to illustrate this reaction. Include state symbols.
 - Name the product formed and describe its appearance. (ii)
 - The product you named in question b.(ii) was added to some water (iii) containing universal indicator. What colour change will take place and what does this show about the product?

[6]

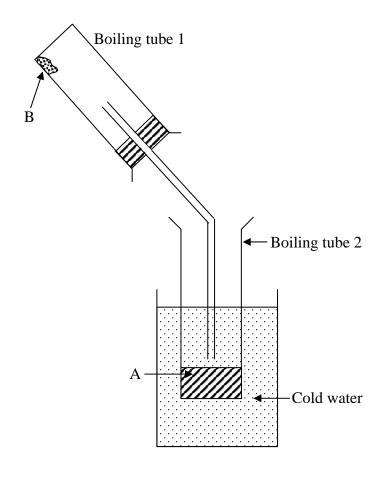
- c. (i) Describe briefly what you observe when red-hot charcoal (carbon) is lowered into a gas jar containing oxygen.
 - Name the gas liberated during this reaction and give a simple test to (ii) confirm the presence of the gas.
 - The gas liberated is bubbled through water containing universal (iii) indicator. What colour change will take place and what does this show about this gas?

[6]

- 50 dm³ of tap water required 20 dm³ of soap solution to form a lather but after boiling, the same volume of water required only 8 dm³ of soap solution to form a lather.
 - Does the water contain temporary hardness, permanent hardness or (i)
 - (ii) Explain why the volume of soap required to form a lather is **less** after boiling.
 - (iii) Name one substance present in the original tap water responsible for causing hardness.

[4]

- b. Write a short explanation about **each** of the following:
 - Hard water causes the furring of kettles. (i)
 - Hard water forms a scum with soap. (ii)


[4]

c. Some substances may be classified as:

deliquescent, efflorescent or hygroscopic

- State what each term means. (i)
- Give one example of each substance. (ii)
- What would you observe when each of the substances you chose in (iii) question c. (ii) is exposed to the air.

[12]

