JUNIOR LYCEUM ANNUAL EXAMINATIONS 2011

Directorate for Quality and Standards in Education
Educational Assessment Unit

FORM 5
PHYSICS
TIME: 1h 45min

Name: \qquad Class: \qquad
Answer ALL questions in the spaces provided on the Exam Paper.
All working must be shown. The use of a calculator is allowed.
Where necessary take the acceleration due to gravity, $g=10 \mathrm{~m} / \mathbf{s}^{2}$.

Marks Grid: For the Examiners' use ONLY

Question	1	2	3	4	5	6	7	8	Theory	Practical	Total
Max. Mark	8	8	8	8	8	15	15	15	85	15	100
Score											

Section A.

1. A volume of $6 \times 10^{-5} \mathrm{~m}^{3}\left(0.00006 \mathrm{~m}^{3}\right)$ of olive oil is poured into a heat resistant container having a base area of $0.03 \mathrm{~m}^{2}$. The density of olive oil at $20^{\circ} \mathrm{C}$ is approximately $900 \mathrm{~kg} / \mathrm{m}^{3}$.
a. Calculate the:
i. mass of the olive oil in kg,
ii. weight of the olive oil in N ,
iii. pressure this mass of the olive oil exerts on the base of the heat resistant container, in Pa

1
b. The olive oil in the heat resistant container is heated from $20^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$. The specific heat capacity of olive oil is approximately $1970 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$. Calculate the heat energy required assuming no energy losses.

2
c. What changes, if any, take place when the olive oil is heated from $20^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ to the:
i. volume occupied by the olive oil,
ii. mass of the olive oil,
iii. density of the olive oil.
2. The graph below shows the motion of Luca‘s car during the last 24 s before comt complete stop in front of his house.

Graph of velocity against time

a. From the graph:
t (s)
i. PQ shows that the car was moving at a constant velocity of \qquad m / s.
ii. The car decelerates uniformly during the last \qquad s of Luca's journey.
b. Luca's car has a mass of 920 kg while Luca has a mass of 80 kg . Calculate the:
i. total mass of Luca and his car,
ii. total kinetic energy in J of Luca and his car just before he started to brake,
c. Using the graph or otherwise calculate the:
i. value of the deceleration of Luca and his car in $\mathrm{m} / \mathrm{s}^{2}$,
ii. average force in N required during deceleration.
3. In 1831, Michael Faraday conducted the first experiments about electromag Later he invented the first transformer.

The figures below show the input and output voltage waveforms obtained on the screen of a cathode ray oscilloscope for Transformer X.
p.d. IV

Input voltage
p.d. IV

Output voltage
a. Complete the statements below:
i. Transformer X is a step-down transformer because the output peak voltage is
\qquad than the input peak voltage.
ii. What kind of electrical supply is a 9 V battery? \qquad .
iii. What kind of electrical supply is the input and output voltage of any transformer?
\qquad .
b. Using waveforms shown above obtained for Transformer X:
i. Calculate the frequency of the input voltage.
ii. What is the value of the frequency of the output voltage?
c. Referring to the above waveforms, calculate the number of turns of the secondary coil of Transformer X given that its primary coil has 2000 turns and assuming 100\% efficiency.
4.
a. The figure shows a parallel beam of light incident on to a convex lens PQ.

i. What kind of beam is the emergent beam?
ii. Determine the size of the focal length of the lens PQ.
iii. Name the phenomenon which takes place when light rays bend as they pass through the glass lens.
b. The speed of light in air is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}(300000000 \mathrm{~m} / \mathrm{s})$.

Calculate the speed of light through the lens in m / s given that the refractive index of air to glass $\left({ }_{a} \eta_{\mathrm{g}}\right)$ lens is 1.5 .
c. The ray diagram shows a ray of light AO incident on to a plane mirror MM' and the corresponding reflected ray OB.

Use this ray diagram to determine the angle of reflection \mathbf{r}. \qquad $-$

d. An object O is placed in front of the lens $P Q$ as shown in the incomplete ray diagram below.

i. Complete the above diagram by drawing a ray to show the position of the virtual image obtained.
ii. On the above diagram draw the virtual image obtained.
5. The diagram below shows Martha's study. On a very cold Sunday evening, Mart turns the gas heater on. The three arrows F, G and H show the air movement in the room while the heater is turned on.

a. Which arrow shows the:
i. coldest volume of the air in the room?
ii. hottest volume of the air in the room? \qquad
b. Heat energy is transferred throughout Martha's room by \qquad .
c. Martha turns the gas heater on for 1 hour. Assuming that no air escapes from the room, state what changes, if any, take place to the:
i. mass of the air inside the room,
ii. total volume of the air inside the room,
iii. density of the air directly above the heater,
iv. average air pressure inside the room.
d. A few purple crystals were placed in a beaker full of water as shown in the diagram below. Draw what is observed when the beaker is heated.

Section B.

6. This question is about the design of an experiment to study Hooke's Law.

Describe an experiment to study Hooke's Law through the behaviour of a spring without permanently deforming it.
a. i. a labelled diagram of the experimental set-up,
ii. a brief description of the method,
iii. a table of results showing the two measurements which must be taken and recorded,
iv. a sketch of the expected graph,
v. the conclusion from your expected results,
vi. two precautions which must be taken during this investigation.
b. Given that the spring elastic limit is 5 N , calculate the greatest mass in kg which can be applied to this spring without damaging it.

7. This question is about Nuclear Physics.

Carbon-14 is a radioactive substance. The symbol for a carbon-14 nucleus is ${ }_{6}^{14} C$
a. Using this information about Carbon -14 determine its:
i. proton number Z ,
ii. mass (nucleon) number A , \qquad1
iii. neutron number N . \qquad
b. Carbon-14 decays by emitting beta particles. Write down the:
i. symbol for a beta particle, 1
ii. mass (nucleon) number of a beta particle, 1
iii. charge of a beta particle.
c. There are three naturally occurring isotopes of carbon on Earth: 99% of the carbon is carbon-12, less than 1% is carbon- 13 , and carbon- 14 which occurs in very small amounts.
i. Explain the term 'isotope'.
ii. The following symbols represent six nuclei.

40	41		12	39	40
A		B	C		
18	19		6	19	20

Which nuclei are isotopes of each other?
d. A radioactive detector connected to a counter gives a count even through a radioactive source is not present.
i. This radioactive count is due to
ii. State two sources of this radiation.
iii. Name the instruments used to detect and measure background radiation rate.
e. A radioactive sample Y is placed in front an appropriate instrument and the coun recorded. A graph of the corrected count rate n in counts per minute is plotted against time in days as shown:

i. Explain the term half-life.
ii. Use the graph to determine the half-life of radioactive sample Y.
iii. What is the corrected count rate of the radioactive sample Y after 12 days? Show your working.
8. This question is about the relationship between current and voltage unknown resistor \mathbf{R}

David and Charlene set up the circuit using the apparatus shown below to investigate the effect on the size of current through an unknown resistor R as the voltage across R is changed.

a. Draw the circuit diagram they set up to carry out their investigation.

3
b. Name the apparatus, which changes the value of the voltage across the unknown resistor R. \qquad
c. Plot a graph of current I (y-axis) against voltage \mathbf{V} (x-axis) using the table of results below. Draw the best straight line.

I/Amps	0.00	0.10	0.20	0.35	0.40	0.50	0.60	0.70
V/Volts	0	1	2	3	4	5	6	7

d. David wrongly read one of the values for current. Use your graph and write down the correct value for current when the voltage is 3 V . \qquad A.
e. Calculate the resistance of the resistor R.
f. State one reason why David and Charlene can rightly conclude that the current I flowing through the unknown resistor R, is directly proportional to the voltage V across it.
g. Explain why the values for current are plotted on the y-axis and NOT on the x-axis.
h. From this experiment, what can be concluded about the resistor R?

