DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION

Department for Curriculum Management and eLearning **Educational Assessment Unit**

Annual Examinations for Secondary Schools 2013

Student Bounty.com FORM 4 (Option) **COMPUTING**

Name:	Class:

Directions to Candidates:

Answer **ALL** questions in **Section A** and **Section B** on this paper;

The use of a flow chart template is permitted;

Calculators are **NOT** allowed;

Good English and orderly presentation are important.

For office use only:

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	Paper Total	Course Work	
Max	5	5	5	5	5	5	5	5	5	5	5	15	15	85%	15%	100%
Mark																

Section A – Answer all Questions

1. Fill in the blanks with one of the following: The first one has been done to help you.

StudentBounts.com GHz, bus, logic gate, instruction set, control unit, byte

a.	The part of the CPU that manages CPU components.	Control Unit
b.	A small device that carries out a logical operation on its input/s to produce a logic output.	
c.	A group of 8 bits.	
d.	A unit of measurement for processor speed.	
e.	Physical connections that transfer data between the different parts inside a computer.	
f.	The complete set of instructions that a processor can deal with.	

2. Fill in the blanks with: [5]

GPS receiver, satellites,	navigation, location, time.
GPS makes use of	orbiting the Earth. It is a system that gives
us information about our	and the
Many modern cars have a	that can help the user in
This is very useful, e	especially when we are in a foreign country.

- Computers may be used in CAD, CAM, CAL and simulations. 3.
 - Fill in with one of the above applications:

[3]

i.	The use of videoconferencing in a school's <i>eTwinning</i> project.	
ii.	The use of computer software to design the setup of a room.	
iii.	The use of robot devices in car manufacture.	

- Flight simulators are used to train pilots.
 - What is the advantage of using computerised simulation rather than real i. [1] planes in the training of pilots?
 - ii. Give a **disadvantage** of simulation-training. [1]

4	A computer system	has different	types of software.

		Stille	ET.
comput	er system has different types of	software.	18
	ate whether the following are Sy irst one has been done to help yo	estem Software or Application Software ou.	CHILL.
i.	Antivirus software	System Software	OM
ii.	Web Browser		
iii.	Operating System		
iv.	Wordprocessor		

Give **two** differences between Tailor-Made and Off-The-Shelf packages.

	Tailor-Made Packages	Off-the-Shelf Packages
i.		
ii.		

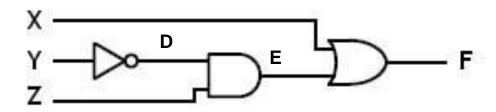
[2]

[1]

5	Documentation and	Testing are im	mortant steps in	the System	Lifecycle
J.	Documentation and	resume are mi	iportant steps in	i inc bystem	Lifety cit.

a.	Name two things one finds in a User Manual.			
	i.			
	ii.			
b.	Mention two things one finds in the Program Documentation. i.	[2]		
	ii.			
c.	<u>Underline</u> the correct answer:	[1]		
	Program documentation is used by the (end-user, programming team).			

- The System Lifecycle has a number of steps. 6.
 - What is the **first** step of the System Lifecycle?


Which of the following are **True** or **False**? b. [4]

i.	Errors during a parallel changeover are less likely to result in			
	loss of data.			
ii.	A direct changeover involves more data redundancy.			
iii.	The feasibility study is done <i>after</i> the program is written and			
	tested.			
iv.	System flowcharts need to be made <i>before</i> programming			
	starts.			

[3]

			Studen
Wh	ich gates do the follo	owing symbols represen	it?
		Gate:	7.00
ii.	7	Gate:	

Look at the logic circuit below:

Complete the **truth table** for the above logic circuit. b.

X	Y	Z	D	E	F
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

- **ASCII** is a 7-bit character encoding scheme. It can represent 128 (2⁷) different characters. 8.
 - How many different characters can an 8-bit character encoding scheme represent? [1] a.
 - b. Extended ASCII is an 8-bit code. Mention one advantage of extended ASCII over [1] ASCII.
 - Besides a letter, a 7-bit binary pattern can also represent a number. [3]
 - What is the **decimal equivalent** of the **largest unsigned number** that can be i. represented by a 7-bit pattern?

	ii.	What is the decimal equivalent of the smallest unsigned number that represented by a 7-bit pattern?	200
	iii.	What is the range of unsigned decimal numbers that can be represented by 7-bit pattern?	a
Com	puters	s store and process binary numbers.	
a.		exert the number 53 to 8-bit binary. Sking	
		Answer:	
b.		nvert the number 24 to 8-bit binary. Sking	
		Anguan	
c.		Answer: 1 24 and 53 in binary. rking	
		Answer:	
d.	Who	ere, inside the computer, is binary addition carried out?	
'If' s	structu	ares allow us to implement decisions in Java programs.	
a.	if (_ Sy	mplete this code so that it outputs 'pass' if the variable <i>mark</i> is 50 or over.	
	} Und	lerline the Java decision structure from the below:	
b.	Ciic		

	t	wo other algorithm cons	structs, besides decisions.	1/2
	(Construct 1		Olling
	(Construct 2		
. W	hich		ors below are probably involved when: ogic error, syntax error, runtime error	[5]
a.		program does not run.		
<u></u>	71	program does not run.		
b.	Va	lues entered by the user	cause the program to crash.	
c.		e programmer has used culation.	the wrong formula in a	
d.	Aı	program runs but gives t	he wrong results.	
e.	Th	e programmer misspells	a keyword.	
ection	n B -	– Answer all Questi	ons	
. A	schoo	ol management system is	s being developed using Java.	s:
	schoo	ol management system is	s being developed using Java. called 'Student' that has the following properties	S:
. A	schoo	ol management system is e application has a class	s being developed using Java.	S:
. A	schoo	ol management system is e application has a class	s being developed using Java. called 'Student' that has the following properties name, surname, group, totalMark Mark is a whole number out of a total of 1000)	s: [2]
. A	schoo Th	ol management system is e application has a class (* totals Answer True or Fals e	s being developed using Java. called 'Student' that has the following properties name, surname, group, totalMark Mark is a whole number out of a total of 1000)	
A	schoo Th	ol management system is e application has a class (* totals Answer True or Fals e	s being developed using Java. called 'Student' that has the following properties name, surname, group, totalMark Mark is a whole number out of a total of 1000) e. red into the system as objects of class Student.	
A	schoo Th	Answer True or Fals Students will be enter A Java class can only	s being developed using Java. called 'Student' that has the following properties name, surname, group, totalMark Mark is a whole number out of a total of 1000) e. red into the system as objects of class Student. have one method.	
A	schoo Th i	Answer True or False Students will be enter A Java class can only	s being developed using Java. called 'Student' that has the following properties name, surname, group, totalMark Mark is a whole number out of a total of 1000) e. red into the system as objects of class Student. have one method.	[2]
. A	schoo Th i	Answer True or False Students will be enter A Java class can only Show how the follows The first one has been	s being developed using Java. called 'Student' that has the following properties name, surname, group, totalMark Mark is a whole number out of a total of 1000) e. red into the system as objects of class Student. have one method. ing properties should be declared: in done to help you.	[2]

Decisions are one of the three constructs (building blocks) of algorithms. M

c.

Fill in the blanks to complete the method enterStudent shown below:

Hint: Use the comments in the code to help you.

```
SHIIdenHounty.com
public void
      System.out.print ("Enter name: ");
      this.name = (Keyboard.readString());
      System.out.print ("Enter surname: ");
      this.surname = (Keyboard.readString());
      System.out.print ("Enter group: ");
      this.group = (Keyboard.readString());
      int mark;
                                     __{{ // starts a loop to read 10 marks
       System.out.print ("Enter mark: ");
       mark = _____; //reads mark from the keyboard
       // the line above adds the mark entered to totalExamMark of the
         current object
     }
```

Java allows other looping constructs besides the one you mentioned in 'b'. Fill in [5] the blanks with one of the looping constructs below:

'while loop', 'do/while loop', 'for loop'

i.	An unconditional looping construct.	
ii.	A conditional loop that may loop many times, once or not at all.	
iii.	A conditional loop that will execute loop contents at least once.	
iv.	A looping construct most useful when it is known beforehand how many times the program will loop.	
V.	Which looping construct does this flowchart represent? Is condition true? False	

The C		t do the following stand for?	
		at do the following stand for?	THE
i		CPU	
i	i.	ALU	
. I	Fill i	in with the words below.	
		Wordlength, address space, system clock, data bus, address b	us
i		The number of bits the CPU can send, receive or process at a go.	
i	i.	Carries data between the CPU and main memory.	
i		The number of memory locations a CPU can directly access.	
i	V.	Its width determines the address space.	
-			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V.	An electronic timer that partly determines CPU speed.	
	Γhe (An electronic timer that partly determines CPU speed. CPU has a number of registers. What is a CPU register?	
i. 1	Γhe (CPU has a number of registers. What is a CPU register?	
. 1	Γhe (CPU has a number of registers.	
i. 1	Γhe (CPU has a number of registers. What is a CPU register? Explain the function of the following special purpose registers:	
i. 1	Γhe (CPU has a number of registers. What is a CPU register? Explain the function of the following special purpose registers: Accumulator	
i. 1	Γhe (CPU has a number of registers. What is a CPU register? Explain the function of the following special purpose registers: Accumulator Program Counter	
i i	The C	CPU has a number of registers. What is a CPU register? Explain the function of the following special purpose registers: Accumulator Program Counter	
i i	The C	CPU has a number of registers. What is a CPU register? Explain the function of the following special purpose registers: Accumulator Program Counter Instruction Register	
i i	The Carrier i.	CPU has a number of registers. What is a CPU register? Explain the function of the following special purpose registers: Accumulator Program Counter Instruction Register wer True or False.	
i. i	i. Ansv	CPU has a number of registers. What is a CPU register? Explain the function of the following special purpose registers: Accumulator Program Counter Instruction Register wer True or False. CPU registers are volatile. Once an instruction is fetched from Main Memory it is	