DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION

	tment tional al Ex	for C Asse	urricu ssmer	ılum l nt Uni	Manag t	gemer	t and	eLea	rning	IN El	DUC#	ATIO	N		,	Track :	OUNT
FOR	M 4						CF	IEM	IST	RY				TI	ME:	1h 3	0mir
Nam	e:												lass				
		Sta	ate syı	mbols	are ex	rpecte		e incl		in all (BLE	chemi	cal eq	uatior	18. 5	6	7	0
1	2												·	3	U		Ů
1							1 H								0		4 He 2
7 Li 3	9 Be						H					11 B 5	12 C	14 N 7	16 O 8	19 F 9	4
7 Li	9 Be 4						H					11 B	12 C	14 N	16 O	19 F	4 He 2 20 Ne
7 Li 3	9 Be 4	45 Sc 21	48 Ti 22	51 V 23	52 Cr 24	55 Mn 25	H	59 Co 27	59 Ni 28	63.5 Cu 29	65 Zn 30	11 B 5	12 C 6	14 N 7	16 O 8	19 F 9	4 He 2 20 Ne 10 40 Ar
7 Li 3 Na 11 39 K	9 Be 4 Mg 12 40 Ca	Sc	Ti	\mathbf{V}	Cr	Mn	H 1 56 Fe	Co	Ni	Cu	Zn	11 B 5 27 Al 13 70 Ga	12 C 6 28 Si 14	14 N 7 31 P 15 75 As	16 O 8 32 S 16	19 F 9 35.5 Cl 17 80 Br	4 He 2 20 Ne 10 40 Ar 18 84 Kr

Marks Grid [For Examiners' use only]

Question	Section A						,	Section	В	
N°.	1	2	3	4	5	6	7	8	9	
Max Mark	10	10	10	10	10	10	20	20	20	Theory Total
Actual Mark										

atomic number

Theory Paper: 85%	Practical: 15%	Final Score: 100%

SECTION A – Answer ALL questions. This section carries 60 marks.

SECTION A – Answer ALL questions. This section carries 60 marks. For each of the following, decide if a reaction occurs.	CHAIS
For each of the following, decide if a reaction occurs.	`
If a reaction occurs, complete the word equation.	
If a reaction does not occur, write: no reaction .	
bromine + sodium chloride	
bromine + sodium iodide —	
chlorine + potassium bromide →	
bromine + potassium chloride —	
	[4]
A stream of chlorine gas is passed over hot iron wool.	
(i) State what you would observe after some time.	
(ii) Give the name of the new solid formed if the apparatus is kept dry throughout.	
(iii) What happens if damp air is allowed to come into contact with the new solid?	
	[3]
Aqueous sodium hydroxide is added to aqueous iron (II) chloride.	

www.StudentBounty.com Homework Help & Pastpapers

[3]

2 Fill in the empty spaces in the table below:

Fill	in the empty spaces in the table		Reason to show that named substance has been oxidized	Thr.
	Reaction	Substance oxidized	Reason to show that named substance has been oxidized	2. COM
1.	$Mg + 2HCl \longrightarrow MgCl_2 + H_2$			
2.	$CuO + H_2 \longrightarrow Cu + H_2O$			
3.	2Na + Cl ₂ → 2NaCl			
4.	$2Fe^{2+} + Cl_2 \longrightarrow 2Fe^{3+} + 2Cl^{-}$			
5.	$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$			

[10]

3a. Fill in the empty spaces in the table below:

	Compound electrolysed	State of compound	Observation at cathode	Observation at anode
1.	lead bromide	molten electrolyte; graphite electrodes.		
2.	concentrated NaCl solution	aqueous electrolyte; platinum electrodes.		
3.	dilute H ₂ SO ₄	aqueous electrolyte; platinum electrodes.		
				[6

		[6]
b.	Identify the substance formed or gas evolved in question a. at:	
	(i) the cathode in Electrolysis 1:	_
	(ii) the anode in Electrolysis 1:	_
	(iii) the anode in Electrolysis 2:	_
	(iv) the anode in Electrolysis 3:	- [4]

e tests that may the test the test that may the test the test tha

Tables A and B include lists of cations and anions together with simple tests that may used for ion identification.

	Table A
Cations	Flame test colour
lithium	red
sodium	yellow
strontium	red

	Table B		
Anions	Observations when dilute nitric acid is added		
carbonate	effervescence		
hydrogencarbonate	effervescence		
hydroxide	no effervescence		

a.	Use the periodic table on the front page of this question paper to write the symbol of:	
	• a lithium ion:	
	• a sodium ion:	
	• a strontium ion:	
		[3]
Э.	Give the molecular and ionic formulae of:	
	• lithium hydroxide:	
	• sodium hydrogencarbonate:	
	• strontium carbonate:	
		[3]
Э.	Two ionic compounds P and Q are known to contain anions and cations from Table A	and
	Table B only.	
	(i) Compound P gave a yellow flame test and produced effervescence with dilute nitr	ric
	acid. Compound P may be:	
	either or	
	(ii) Compound Q gave a red flame test and did not produce effervescence with dilute	nitric
	acid. Compound Q may be:	
	either or	

	CAPE CONTRACTOR OF THE CONTRAC	2
5	You are required to find the concentration of an ascorbic acid solution by titrating it ag	4
	standard iodine solution of concentration 0.5 mol dm ⁻³ .	

$$\begin{array}{ccccc} C_6H_8O_6 & + & I_2 & \longrightarrow & C_6H_6O_6 & + & 2HI \\ \textbf{ascorbic} & & \textbf{dehydroascorbic} \\ \textbf{acid} & & \textbf{acid} \end{array}$$

Once all the ascorbic acid is neutralized, the excess iodine reacts with a starch solution indicator forming immediately a blue-black coloration. This indicates the endpoint of the titration.

a.	Name three items of laboratory equipment necessary to conduct the titration.	[3]
b.	It was found that 50 cm ³ of the ascorbic acid available were exactly neutralized by 12.5 of iodine solution of concentration 0.5 mol dm ⁻³ .	5 cm ³
	(i) How many moles of iodine solution were used?	
	(ii) How many moles of ascorbic acid were used?	
	(iii) Find the concentration of the ascorbic acid used.	_ [6]
c.	In this titration, the ascorbic acid solution is:	

oxidized

reduced

neither reduced nor oxidized

[1]

	te down full chemical equations, including state symbols to represent each of the owing reactions:
6a. Wri	te down full chemical equations, including state symbols to represent each of the
foll	owing reactions:
(i)	Copper metal heated in a stream of oxygen.
(ii)	The thermal decomposition of copper (II) carbonate.
(iii)	The action of dilute hydrochloric acid on copper (II) oxide.
	Copper compounds, particularly copper (II) oxide are often used as catalysts in industry. Which general property of copper makes copper compounds suitable as catalysts in chemical reactions?
	Copper compounds, particularly copper (II) chloride are used in fireworks as a colouring agent. Which colour in a fireworks display originates from copper compounds?
	e one reason for each of the following: When exposed to moist air, a reddish-brown copper sheet becomes green-coloured.
(ii)	Copper compounds can be used as a wood preservative.

SECTION B – Answer TWO questions only on the foolscap provided. This section carries 40 marks.

	SE	
	SECTION B – Answer TWO questions only on the foolscap provided. This section carries 40 marks. Draw a labelled diagram of the apparatus you would use to show that a graphite rod	COUNTY!
7a.	Draw a labelled diagram of the apparatus you would use to show that a graphite rod	OM
	conducts electricity but a polythene rod does not.	[4]
b.	Draw a labelled diagram of the apparatus you would use to show that aqueous copper (II)	1
	sulfate is an electrolyte but ethanol is not.	[4]
c.	Each of the compounds:	
	 aqueous copper (II) chloride aqueous sodium iodide aqueous magnesium sulfate 	
	is tested for electrical conductivity using a modified version of the apparatus you used in	
	question b.	
	For each of these electrolytes:	
	(i) outline your observations and identify the new products formed at each electrode.	
	(ii) explain what happens in terms of the preferential discharge of ions.	[12]
8	Comment on each of the following statements:	
	Your comments should include:	
	 a detailed explanation of any reaction that occurs 	
	chemical equations where appropriate	
a.	An aqueous solution of hydrogen chloride is a good electrolyte but hydrogen chloride	
	dissolved in methylbenzene is a non-electrolyte.	[5]
b.	Aluminium does not react with sulfuric acid unless it is rubbed with abrasive paper but	
	zinc reacts readily.	[5]
c.	Zinc oxide reacts with both dilute hydrochloric acid and aqueous sodium hydroxide but	
	copper (II) oxide reacts with dilute hydrochloric acid only.	[5]

[5]

d. The reaction between aluminium powder and iron (III) oxide is highly exothermic.

[5]

- 9a. The Environmental Protection Agency has established 10 mg/litre as the maximum containable level for nitrate ions in underground water and 1 mg/litre for nitrate ions in drinkable tap water.
 - (i) Name **two** sources that are responsible for contaminating water with nitrate ions.
 - (ii) Which property of nitrates makes it possible for them to leach easily into underground water? [3]
 - b. (i) Give the name of a coloured gas that is evolved when most metallic nitrates are heated.
 - (ii) Give two properties of this gas.
 - (iii) Draw a labelled diagram of the apparatus that can be used for the laboratory preparation and collection of this gas.
 - (iv) Name **one** safety precaution you should take when preparing this gas in the laboratory.
 - (v) Write a full equation **complete with state symbols** for the reaction. [12]
- c. Pure dry ammonia can be decomposed into its elements by passing it over heated iron wool.
 - (i) Write an equation **complete with state symbols** for this reaction.
 - (ii) What is the purpose of the iron wool?
 - (iii) 40 cm³ of pure dry ammonia were completely decomposed into its elements. Calculate the **total** volume of gases produced if the original temperature and pressure were left unchanged throughout.