# SECONDARY SCHOOL ANNUAL EXAMINATIONS 2008 

DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION
Educational Assessment Unit

## FORM 4

PHYSICS
TIME: 1h 30min

Name: $\qquad$ Class: $\qquad$
Answer all questions.
All working must be shown. The use of a calculator is allowed. Where necessary take acceleration due to gravity $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

You might find the following list of formulae useful.

| Pressure | $\mathrm{P}=\rho \mathrm{gh}$ | $\mathrm{F}=\mathrm{PA}$ |
| :--- | :--- | :--- |
|  |  |  |
| Force | $\mathrm{F}=\mathrm{ma}$ | $\mathrm{W}=\mathrm{mg}$ |
|  |  |  |
| Motion | Momentum $=\mathrm{mv}$ | $\mathrm{s}=1 / 2 \mathrm{at}^{2}$ |
|  | Impulse $=$ Change in Momentum | $\mathrm{V}=\mathrm{u}+\mathrm{at}$ |
|  |  |  |
| Electricity | $\mathrm{Q}=\mathrm{It}$ | $\mathrm{W}=\mathrm{QV}$ |
|  | $\mathrm{V}=\mathrm{IR}$ | $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$ |
|  | $\mathrm{P}=\mathrm{IV}=\mathrm{I}^{2} \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$ | $\mathrm{R} \alpha \frac{1}{\mathrm{~A}} \quad \mathrm{R} \quad \alpha \mathrm{L}$ |
|  |  |  |
| Heat | $\mathrm{H}=\mathrm{mc} \Delta \theta$ | $\mathrm{E}=\mathrm{Pt}$ |

For office use only.

| Number | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Max Mark | $\mathbf{8}$ | $\mathbf{8}$ | $\mathbf{8}$ | $\mathbf{8}$ | $\mathbf{8}$ | $\mathbf{1 5}$ | $\mathbf{1 5}$ | $\mathbf{1 5}$ | $\mathbf{8 5}$ |
| Actual Mark |  |  |  |  |  |  |  |  |  |


|  | Total Theory | Total Practical | Final Mark |
| :--- | :---: | :---: | :---: |
| Actual Mark |  |  |  |
| Maximum Mark | 85 | 15 | 100 |

## Section A

Answer ALL questions.
This section carries 40 marks.

1. Fill in the table below:

| Quantity <br> (to be measured ) | Unit <br> (symbols can be used) | Instrument <br> (used to measure quantity) |
| :---: | :---: | :---: |
| Electrical resistance | kg | Resistance meter |
|  | kWh |  |
|  |  | joulemeter |
| weight |  |  |
| atmospheric pressure |  | barometer |
| frictional force |  | air track |

2. An object of mass 3 kg is at rest on a smooth horizontal surface. A force of 15 N is applied on the object for 3 seconds.

a. Add to the diagram another force $\mathbf{W}$ that represents the weight of the object.
b. What is the numerical value of $\mathbf{W}$ ?
c. What is the initial velocity of the object just before the force is applied ?
d. The applied force causes the object to move with
e. Calculate the velocity of the object after 3 seconds.
$\qquad$
$\qquad$
$\qquad$
3. The diagram shows a simple electrical circuit:

a.

$\qquad$ and measures current in $\qquad$ .
b. $\mathbf{B}_{1}$ and $\mathbf{B}_{2}$ are $\qquad$ connected in $\qquad$ .
c. $\mathbf{S}$ is a switch that allows a $\qquad$ to pass through the circuit when it is
$\qquad$ .
d. V - is a $\qquad$ and measures the potential difference in
$\qquad$ across the ends of $\mathbf{B}_{1}$ and $\mathbf{B}_{2}$.
4. An aluminium container without a lid contains boiling water.
a. Heat is transferred from the water through the aluminium by $\qquad$ .
b. In the water, heat is transferred by $\qquad$ .
c. The water cools from $100^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 10 minutes.
(i) what is the temperature change ?
(ii) if $600 \mathrm{~kJ}(600000 \mathrm{~J}$ ) of heat are lost in 10 minutes, how much heat is lost in one second?
(iii) state two ways to reduce heat losses.
$\qquad$
5. a. An uncharged polythene rod contains an $\qquad$ amount of negative and positive charges.
b. The polythene rod becomes $\qquad$ charged when rubbed against a woollen duster.
c. If the charged polythene rod is earthed, $\qquad$ charges flow to earth so that the polythene rod becomes again $\qquad$ .
d. A negatively-charged rod is brought near the charged polythene rod.


Tick the box next to the correct statement.
(i) There is no force at all. $\square$
(ii) There is a force of repulsion. $\square$
(iii) There is a force of attraction. $\square$
e.

positively charged metal
conductor on insulating base
Put + and - signs to show the charge on the :
(i) positively-charged metal conductor.
(ii) charged polythene rod.
f. The diagram in question e above shows that $\qquad$ charges attract.

## Section B

## Answer ALL questions.

## This section carries 45 marks.

6a. The diagram shows two similar water tanks A and B. Tank A contains water to a depth of 1 m while Tank B contains only 0.85 m depth of water.
( Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$ ).

i) The pressure at the surface of the water is known as $\qquad$ .
ii) Use the formula $P=$ density x gravity x depth to calculate the pressure exerted by the water only on the base of each tank.

Tank A

Tank B
iii) The pressure on the base of $\operatorname{tank} \mathrm{A}$ is greater than the pressure on the base of $\operatorname{tank} \mathrm{B}$.

This proves that pressure and depth are $\qquad$
b. The diagram shows a water dam and a diver swimming below the surface of the water.

i) Why is the dam wide at the base but narrow at the top ?
ii) Where does the diver experience the biggest pressure :

7. Emma conducted an experiment to show that different lengths of similar wire have different resistance. She put the results in a table as shown below.

| Length of wire (m) | 0 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Resistance (ohms) | 0 | 1.20 | 2.40 | 3.60 | 4.80 | 6.00 |

a. On the graph paper on page 7 of this question paper, plot a graph of resistance on the $y$-axis against length on the $x$-axis.
b. From your graph find:
i) the length of wire that has a resistance of 1 ohm.
ii) the resistance of a wire of length 0.5 m .
c. The graph shows that the $\qquad$ of a wire and its length are directly proportional.
d.

1m 2m

The diagram above shows two lengths of wire of the same thickness.
Fill in the missing space in the table below:

| Length of wire | Resistance |
| :---: | :---: |
| 1 m | 5 ohms |
| 2 m |  |

e.

## 1m

1m
The diagram above shows two equal lengths of wire of different thickness or diameter.
Fill in the missing space in the table below:

| Thickness / Diameter of wire | Resistance |
| :---: | :---: |
| 2 mm | 6 ohms |
| 4 mm |  |

## Use a graph paper for this page

8. In an experiment about momentum, a trolley A of mass 4 kg is allowed to roll down a ramp. When its speed is $5 \mathrm{~m} / \mathrm{s}$, it collides with a stationary trolley B also of mass 4 kg .

a. i) Momentum = $\qquad$ x velocity.
ii) Which of the following is the unit of momentum ?

N/kgkgm/s $\square$ Nos $\square$ $\mathrm{kg} / \mathrm{s}^{2}$ $\square$ $\mathrm{N} / \mathrm{s}^{2}$ $\square$
bi) Fill in the empty spaces in the table below:

## Just BEFORE the collision

|  | Mass | Velocity | Momentum |
| :--- | :---: | :---: | :---: |
| Trolley A |  | $5 \mathrm{~m} / \mathrm{s}$ |  |
| Trolley B |  | 0 |  |

ii) Total momentum before the collision is
$\square$
$\square$ $=$ $\square$[2]
c. On collision , the trolleys stick together and move forward with an initial velocity of $2.5 \mathrm{~m} / \mathrm{s}$.

Fill in the empty spaces in the table below :

## Just AFTER the collision

|  | Mass | Velocity | Momentum |
| :--- | :--- | ---: | ---: |
| Trolley A + Trolley B |  | $2.5 \mathrm{~m} / \mathrm{s}$ |  |

d. This experiment shows that:

Total momentum before the collision $=$ Total

