### **SECONDARY SCHOOL ANNUAL EXAMINATIONS 2008**

DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION

Educational Assessment Unit

# 

Answer all questions.

All working must be shown. The use of a calculator is allowed. Where necessary take acceleration due to gravity  $g = 10m/s^2$ .

You might find the following list of formulae useful.

| Pressure    | $P = \rho g h$                  | F = PA                                                    |
|-------------|---------------------------------|-----------------------------------------------------------|
|             |                                 |                                                           |
| Force       | F = ma                          | W = mg                                                    |
|             |                                 |                                                           |
| Motion      | Momentum = mv                   | $s = \frac{1}{2} at^{2}$                                  |
|             | Impulse = Change in Momentum    | v = u + at                                                |
|             |                                 |                                                           |
| Electricity | Q = It                          | W = QV                                                    |
|             | V = IR                          | $\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3$ |
|             | $P = IV = I^2R = \frac{V^2}{R}$ | $R \alpha \frac{1}{A}$ $R \alpha L$                       |
|             |                                 |                                                           |
| Heat        | $H = mc \triangle \theta$       | E = Pt                                                    |

For office use only.

| Number      | 1 | 2 | 3 | 4 | 5 | 6  | 7  | 8  | Total |
|-------------|---|---|---|---|---|----|----|----|-------|
| Max Mark    | 8 | 8 | 8 | 8 | 8 | 15 | 15 | 15 | 85    |
| Actual Mark |   |   |   |   |   |    |    |    |       |

|              | Total Theory | Total Practical | Final Mark |
|--------------|--------------|-----------------|------------|
| Actual Mark  |              |                 |            |
| Maximum Mark | 85           | 15              | 100        |

### Answer ALL questions. This section carries 40 marks.

1. Fill in the table below:

| Quantity              | Unit                  | Instrument                 |
|-----------------------|-----------------------|----------------------------|
| (to be measured)      | (symbols can be used) | (used to measure quantity) |
| Electrical resistance |                       | Resistance meter           |
|                       | kg                    |                            |
|                       | kWh                   | joulemeter                 |
| weight                |                       |                            |
| atmospheric pressure  |                       | barometer                  |
| frictional force      |                       | air track                  |

[8]

2. An object of mass 3 kg is at rest on a smooth horizontal surface. A force of 15N is applied on the object for 3 seconds.



| a. Add to the diagram another force <b>W</b> that represents the weight of the object. | [1] |
|----------------------------------------------------------------------------------------|-----|
| b. What is the numerical value of <b>W</b> ?                                           | [2] |
| c. What is the initial velocity of the object just before the force is applied ?       | [1] |
| d. The applied force causes the object to move with                                    | [1] |
| e. Calculate the velocity of the object after 3 seconds.                               |     |
|                                                                                        |     |

[3]

3. The diagram shows a simple electrical circuit:



5. a. An uncharged polythene rod contains an \_\_\_\_\_ amount of negative and positive charges. [1] b. The polythene rod becomes \_\_\_\_\_\_ charged when rubbed against a woollen duster. [1] c. If the charged polythene rod is earthed, \_\_\_\_\_ charges flow to earth so that the polythene rod becomes again \_\_\_\_\_ [2] d. A negatively-charged rod is brought near the charged polythene rod . charged polythene Tick the box next to the correct statement. (i) There is no force at all. (ii) There is a force of repulsion. (iii) There is a force of attraction. [1] e. charged polythene metal positively charged metal conductor on insulating base Put + and • signs to show the charge on the : (i) positively-charged metal conductor. (ii) charged polythene rod. [2] f. The diagram in question e above shows that \_\_\_\_\_ charges attract. [1]

## **Section B**

#### Answer ALL questions. This section carries 45 marks.

The diagram shows two similar water tanks A and B. Tank A contains water to a depth 6a. of 1m while Tank B contains only 0.85m depth of water. (Density of water =  $1000 \text{ kg/m}^3$ ).



i) The pressure at the surface of the water is known as \_\_\_\_\_

ii) Use the formula P = density x gravity x depth to calculate the pressure exerted by the water only on the base of each tank.

| Tank A |     |
|--------|-----|
|        |     |
|        |     |
| Tank B | [6] |

iii) The pressure on the base of tank A is greater than the pressure on the base of tank B. This proves that pressure and depth are \_\_\_\_\_ [2]

b. The diagram shows a water dam and a diver swimming below the surface of the water.



i) Why is the dam wide at the base but narrow at the top ?



7. Emma conducted an experiment to show that different lengths of similar wire have different resistance. She put the results in a table as shown below.

| Length of wire (m) | 0 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 |
|--------------------|---|------|------|------|------|------|
| Resistance (ohms)  | 0 | 1.20 | 2.40 | 3.60 | 4.80 | 6.00 |

- a. On the graph paper on page 7 of this question paper, plot a graph of resistance on the y-axis against length on the x-axis.
- b. From your graph find:
  i) the length of wire that has a resistance of 1 ohm. [2]
  ii) the resistance of a wire of length 0.5m. [2]
  - c. The graph shows that the \_\_\_\_\_\_of a wire and its length are directly proportional. [1]

d.

1m 2m

1m

The diagram above shows two lengths of wire of the same thickness. Fill in the missing space in the table below:

| Length of wire | Resistance |
|----------------|------------|
| 1m             | 5 ohms     |
| 2m             |            |

[2]

[6]

e.

The diagram above shows two equal lengths of wire of different thickness or diameter. Fill in the missing space in the table below:

1m

| Thickness / Diameter of wire | Resistance |
|------------------------------|------------|
| 2mm                          | 6 ohms     |
| 4mm                          |            |

[2]

Use a graph paper for this page

8. In an experiment about momentum, a trolley A of mass 4kg is allowed to roll down a ramp. When its speed is 5m/s, it collides with a stationary trolley B also of mass 4kg.



b i) Fill in the empty spaces in the table below :

### Just BEFORE the collision

|           | Mass | Velocity | Momentum |          |
|-----------|------|----------|----------|----------|
| Trolley A |      | 5m/s     |          | [ 1, 2 ] |
| Trolley B |      | 0        |          | [1.2]    |

- ii) Total momentum before the collision is + = [2]
- c. On collision , the trolleys stick together and move forward with an initial velocity of 2.5m/s.

Fill in the empty spaces in the table below :

### Just AFTER the collision

|                              | Mass | Velocity | Momentum |
|------------------------------|------|----------|----------|
| <b>Trolley A + Trolley B</b> |      | 2.5m/s   |          |

d. This experiment shows that :

Total momentum before the collision = Total \_\_\_\_\_ [2]

]