SECONDARY SCHOOL ANNUAL EXAMINATIONS 2007

EDUCATIONAL ASSESSMENT UNIT- EDUCATION DIVISION

FORM 3	PHYSICS	Time: 1h 30min

NAME:_____

CLASS:_____

Answer all questions.

All working must be shown. The use of a calculator is allowed.

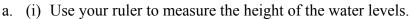
Where necessary take acceleration due to gravity $g = 10 m/s^2$.

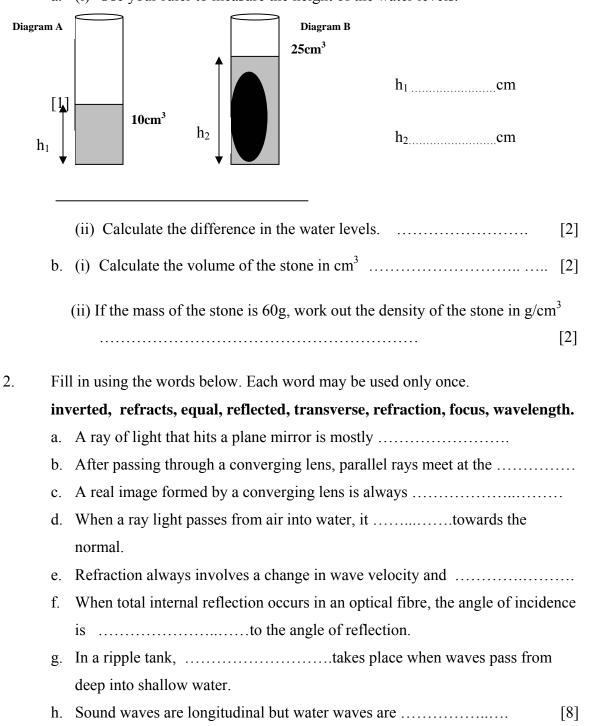
You may find some of these formulae useful.

Area of triangle = base x height
2area of trapezium = h
2 (sum of parallel sides)v = s/tv = u + at $s = at^2/2$ W = mgdensity = mass/volumework done = F sPE = mghPower = work done
time $KE = mv^2$ moment of a force = Force X perpendicular distance

magnification = <u>height of image</u> = <u>image distance</u> height of object object distance

refractive index of glass = <u>speed of light in air</u> speed of light in glass


 $\begin{array}{l} \text{frequency} = \underline{\text{number of waves}} & \text{v} = \mathbf{f} \, \boldsymbol{\lambda} \\ \\ \text{time} \end{array}$


For office use only:

Question	1	2	3	4	5	6	7	8	Total Exam	Practical	Final Mark
Marks											

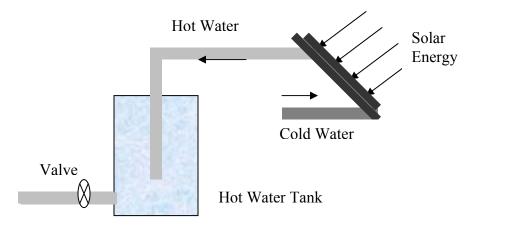
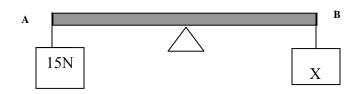

SECTION A: Answer ALL questions. This section has a total of 40 marks.

Diagram A shows a measuring cylinder containing 10 cm³ of water.
Diagram B shows the same measuring cylinder containing the same volume of water after a stone was placed inside.

3. On a particular day, a solar panel absorbed an average of 1 MJ (1000 000 J) of solar energy every hour. When joined to a hot water tank, this solar panel was found to be 40% efficient.

- b. Complete the energy flow diagram below

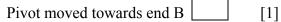


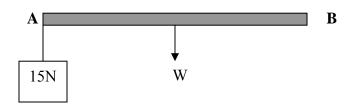
c.	Calculate in J how much energy every hour is actually used to heat the wait this solar panel is 40% efficient .	ater,
		[2]
d.	The principle of energy conservation states	
		[1]
e.	Keeping in mind your answer to question d, say what may have happened the unused solar energy.	to
		[1]
f.	Name one advantage and one disadvantage of heating water using solar energy over using electricity.	
	Advantage	[1]
	Disadvantage	[1]

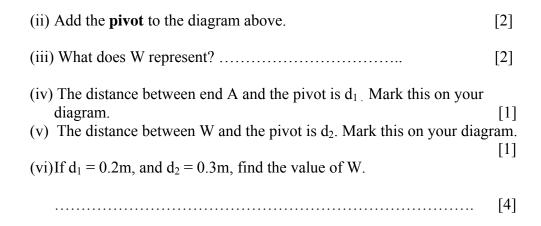
4.	Gamma	X-rays	Ultraviolet	Visible	Infrared	Micro	Radio		
	rays			light		waves	waves		
	a. (i	a. (i) All electromagnetic waves travel in a vacuum with the same[1]					[1]		
	(i	i) The electror	nagnetic wave	s above are ar	ranged in or	der of incre	asing		
							[1]		
	(i	ii)Ultra violet	rays can cause				[1]		
	(i	v)X-rays pass	through huma	n tissues but a	are absorbed	by the	[1]		
	b.	A radio tran	smitter encode	es ('changes')	sound waves	s into radio	waves		
		which are th	en transmitted	to radio rece	ivers.				
	(i) Give one ad	vantage of tran	nsmitting radi	o waves rath	er than sour	nd waves.		
							[1]		
	(i	i) In a radio re	ceiver, a radio	wave is	in	to a sound	wave. [1]		
	c.	A radio stati	ion transmits a	t a frequency	of 100 MHz	(1.0×10^8)	Hz)		
	0.		velength of the						
		in air is 3.0	-						
							[2]		
5.			The	speed of sour	nd in air is 33	30 m/s.			
			<u> </u>	ound produced	l at A reache	s a wall at l	B in 2.5		
				conds.					
	A	12214322	B						
	a.	Calculate th	e distance from	\mathbf{A} to \mathbf{B}			[2]		
	b.	After hitting the wall, the sound returns to A.							
	(i	i) At B the sound is[1]							
	(i	i) The same so	ound heard aga	in at A is call	ed an		[1]		
	(i	ii) The total ti	me taken by th	e sound to rea	ich A again i	S			
			seconds.				[1]		
	C.		d at \mathbf{A} is produ						
			he light seen b						
	(i	i) Give a reaso	on for your ans	wer			[2]		

SECTION B: Answer ALL questions . This section has a total of 45 marks.

6. The diagram shows a uniform ruler balanced on a pivot at its mid-point. Weights hang at A and B.




a. The centre of gravity of this uniform ruler acts through its

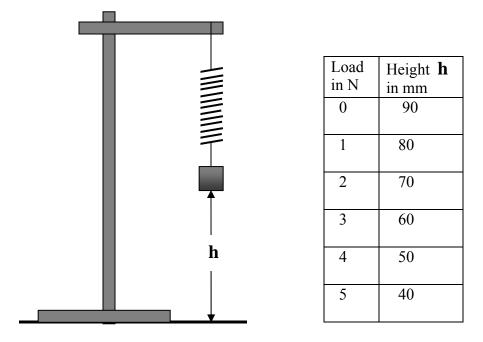


- b. When the ruler is balanced: (i) $X = \dots N$. [2]
- d. When X is removed, the ruler was balanced again by moving the pivot towards one end.
 - (i) Tick the correct option.

Pivot moved towards end A _____ Pivot moved toward

7. The last minute of a race can be divided into 3 parts.

Part 1: Joseph ran with constant speed for 20 seconds.


Part 2: Joseph sprinted forward for 30 seconds.

Part 3: Joseph slowed down for 10 seconds until he came to rest.

Tick the correct option in questions a, b and c.

- a. While sprinting forward, Joseph ran with constant speed. acceleration. deceleration. [1] b While slowing down, Joseph ran with constant speed. acceleration. deceleration. [1] c. In the diagram below, BC is the velocity – time graph for one part of this section of the race. Part 2 Part 3 BC represents: Part 1 [1] 8 7 6 B. A Velocity 5 m/s 4 3 2 1 0 5 10 15 20 25 30 35 40 45 50 55 60 time / s d. (i) From the graph, write down the velocity of Joseph at: B D Α [4]

A spring is mounted vertically as shown in the diagram below. The height h is the distance between the bottom of the load and the bench.
Maria measures values of h for different loads and tabulated her results.

- b. A spring obeys Hooke's Law if the and the are directly proportional. [2]
- c. On the graph paper on Page 8 of this answer paper, plot a graph of h in mm on the y-axis against Load in N on the x-axis.
- d. Use your graph to fill the table below:

Load in N.	Height in mm.
1.5	
4.2	
	65
	52

e. For a load of 10 N, the spring does not regain its original length when the load is removed. This means that the has been exceeded. [2]

Page 7 of 8

[4]