NAME: \qquad CLASS: \qquad
Answer all questions.
All working must be shown. The use of a calculator is allowed.

Where necessary take acceleration due to gravity $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

You may find some of these formulae useful.

Area of triangle $=\frac{\text { base } x \text { height }}{2}$ area of trapezium $=\frac{h}{2}$ (sum of parallel sides)
$\mathbf{v}=\mathrm{s} / \mathrm{t} \quad \mathrm{v}=\mathbf{u}+\mathrm{at} \quad \mathrm{s}=\mathbf{a t}^{2} / 2 \quad \mathrm{~W}=\mathrm{mg} \quad$ density $=$ mass/volume
work done $=\mathrm{F}$ s $\quad \mathrm{PE}=\mathrm{mgh} \quad$ Power $=\frac{\text { work done }}{\text { time }} \quad \mathrm{KE}=\frac{\mathrm{mv}^{2}}{2}$
moment of a force $=$ Force X perpendicular distance
magnification $=\underline{\text { height of image }=}$ image distance height of object object distance
refractive index of glass $=$ speed of light in air speed of light in glass
frequency $=\underline{\text { number of waves }} \quad v=f \boldsymbol{\lambda}$

> time

For office use only:

Question	1	2	3	4	5	6	7	8	Total Exam	Practical	Final Mark
Marks											

SECTION A: Answer ALL questions. This section has a total of 40 marks.

1. Diagram A shows a measuring cylinder containing $10 \mathrm{~cm}^{3}$ of water. Diagram B shows the same measuring cylinder containing the same volume of water after a stone was placed inside.
a. (i) Use your ruler to measure the height of the water levels.

(ii) Calculate the difference in the water levels.
b. (i) Calculate the volume of the stone in cm^{3}
(ii) If the mass of the stone is 60 g , work out the density of the stone in $\mathrm{g} / \mathrm{cm}^{3}$
\qquad
2. Fill in using the words below. Each word may be used only once. inverted, refracts, equal, reflected, transverse, refraction, focus, wavelength.
a. A ray of light that hits a plane mirror is mostly \qquad
b. After passing through a converging lens, parallel rays meet at the \qquad
c. A real image formed by a converging lens is always \qquad
d. When a ray light passes from air into water, it \qquad towards the normal.
e. Refraction always involves a change in wave velocity and \qquad
f. When total internal reflection occurs in an optical fibre, the angle of incidence is \qquad .to the angle of reflection.
g. In a ripple tank, \qquad .takes place when waves pass from deep into shallow water.
h. Sound waves are longitudinal but water waves are
3. On a particular day, a solar panel absorbed an average of 1 MJ (1000000 J) of solar energy every hour. When joined to a hot water tank, this solar panel was found to be 40% efficient.

a. Is solar energy renewable or non-renewable?
b. Complete the energy flow diagram below

c. Calculate in J how much energy every hour is actually used to heat the water, if this solar panel is $\mathbf{4 0 \%}$ efficient.
d. The principle of energy conservation states \qquad
\qquad
e. Keeping in mind your answer to question d, say what may have happened to the unused solar energy.
\qquad
f. Name one advantage and one disadvantage of heating water using solar energy over using electricity.

Advantage
Disadvantage
4.

Gamma rays	X-rays	Ultraviolet	Visible light	Infrared	Micro waves	Radio waves

a. (i) All electromagnetic waves travel in a vacuum with the same
(ii) The electromagnetic waves above are arranged in order of increasing
\qquad
(iii)Ultra violet rays can cause
(iv)X-rays pass through human tissues but are absorbed by the
b. A radio transmitter encodes ('changes') sound waves into radio waves which are then transmitted to radio receivers.
(i) Give one advantage of transmitting radio waves rather than sound waves.
\qquad
(ii) In a radio receiver, a radio wave is \qquad into a sound wave.
c. A radio station transmits at a frequency of $100 \mathrm{MHz}\left(1.0 \times 10^{8} \mathrm{~Hz}\right)$.

Find the wavelength of the waves if the velocity of electromagnetic waves in air is $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
\qquad
5.

a. Calculate the distance from \mathbf{A} to \mathbf{B}.
b. After hitting the wall, the sound returns to \mathbf{A}.
(i) At \mathbf{B} the sound is
(ii) The same sound heard again at \mathbf{A} is called an
(iii) The total time taken by the sound to reach \mathbf{A} again is
\qquad
c. As the sound at \mathbf{A} is produced, a light is flashed.
(i) From \mathbf{B}, is the light seen before or after the sound is heard? [1]
(ii) Give a reason for your answer

SECTION B: Answer ALL questions. This section has a total of 45 marks.

6. The diagram shows a uniform ruler balanced on a pivot at its mid-point. Weights hang at A and B .

a. The centre of gravity of this uniform ruler acts through its
\qquad
b. When the ruler is balanced: (i) $\mathrm{X}=\ldots \ldots \ldots \mathrm{N}$.
c. $\quad \mathrm{X}$ is removed so that the ruler loses equilibrium. In which direction does it turn, clockwise or anticlockwise?
d. When X is removed, the ruler was balanced again by moving the pivot towards one end.
(i) Tick the correct option.

Pivot moved towards end $\mathrm{A} \square$ Pivot moved towards end $\mathrm{B} \square$

(ii) Add the pivot to the diagram above.
(iii) What does W represent?
(iv) The distance between end A and the pivot is d_{1}. Mark this on your diagram.
(v) The distance between W and the pivot is d_{2}. Mark this on your diagram.
(vi) If $\mathrm{d}_{1}=0.2 \mathrm{~m}$, and $\mathrm{d}_{2}=0.3 \mathrm{~m}$, find the value of W .
7. The last minute of a race can be divided into 3 parts.

Part 1: Joseph ran with constant speed for 20 seconds.
Part 2: Joseph sprinted forward for 30 seconds.
Part 3: Joseph slowed down for 10 seconds until he came to rest.

Tick the correct option in questions \mathbf{a}, \mathbf{b} and \mathbf{c}.

a. While sprinting forward, Joseph ran with
constant speed.
acceleration.
deceleration.
[1]
b While slowing down, Joseph ran with
constant speed.
acceleration.
deceleration.
c. In the diagram below, BC is the velocity - time graph for one part of this section of the race.

d. (i) From the graph, write down the velocity of Joseph at:
A
B
C
D
(ii) Find the velocity of Joseph after 40 seconds 55 seconds
e. The distance covered can be worked out by finding the area under the graph. Use this fact to calculate the distance covered by Joseph
(i) between A and B
(ii) between C and D
8. A spring is mounted vertically as shown in the diagram below. The height \mathbf{h} is the distance between the bottom of the load and the bench.
Maria measures values of \mathbf{h} for different loads and tabulated her results.

Load in N	Height h in mm
0	90
1	80
2	70
3	60
4	50
5	40

a. When a spring is loaded, the increase in length is called the
b. A spring obeys Hooke's Law if the \qquad and the \qquad are directly proportional.
c. On the graph paper on Page 8 of this answer paper, plot a graph of \mathbf{h} in mm on the y -axis against Load in N on the x -axis.
d. Use your graph to fill the table below:

Load in N.	Height in mm.
1.5	
4.2	
	65
	52

e. For a load of 10 N , the spring does not regain its original length when the load is removed. This means that the \qquad
\qquad has been exceeded.

