SECONDARY SCHOOLS ANNUAL EXAMINATIONS 2006

TIME: 1 h 30 min

NAME: \qquad CLASS: \qquad
Answer ALL questions in the spaces provided on the Examination Paper. All working must be shown. The use of a calculator is allowed.

Where necessary take the acceleration due to gravity, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{aligned}
& \text { You may find some of these formulae useful: } \\
& W=m g \quad F=m a \quad \text { Energy }=\text { Power } x \text { time } \quad v=u+a t \quad s=\frac{a t^{2}}{2} \\
& \text { momentum }=\text { mass } x \text { velocity } \quad \text { Pressure }=\frac{\text { force }}{\text { area }} \quad P=h \rho g \\
& \text { Heat energy }=\text { mass } x \text { specific heat capacity } x \text { temperature change } \\
& V=I R \quad Q=V I \quad R=I t \quad R=R_{1}+R_{2}+R_{3}
\end{aligned}
$$

Section A. Answer All Questions. This Section carries 55 marks.

1. Ryan of mass 50 kg , running at $1.5 \mathrm{~m} / \mathrm{s}$, jumps on to a stationary trolley of mass 10 kg , and both move together along a long corridor in a supermarket. Calculate:
a. The momentum of the trolley before Ryan jumps on it. \qquad
b. Ryan's momentum just before jumping on to the trolley.
c. Calculate the total mass moving after Ryan jumps on to the trolley.
d. Calculate the common velocity of Ryan and the trolley as they both travel together along the long corridor.
2. A battery-operated model car is travelling at a uniform speed along a level runway in the direction shown in the diagram. One external horizontal force F_{A} acting on the car is shown on the diagram.

a. Force F_{A} acting against the motion of the car is called \qquad .
b. i. Add to the diagram another horizontal force F_{E} acting on the car in the opposite direction to F_{A}
ii. $\quad F_{E}$ is referred to as the \qquad force.
c. The resultant force acting on the car travelling at uniform speed is \qquad N. 1
d. i. State what happens to the speed of the car when force F_{E} is bigger than force F_{A}. \qquad .
ii. As force F_{E} gets bigger, force F_{A} gets \qquad but not to the same extent.
e. Calculate:
i. the resultant force acting the model car given that force F_{E} is 5 N and force F_{A} is 2 N .
ii. the acceleration produced by this force given that the mass of the model car is 2 kg .
3. The figure shows an underwater photograph of four divers: A, B, C and D.
a. i. Which two divers are under the same pressure? \qquad
ii. Give a reason to your answer.
b. i. Which diver has the greatest pressure due to the water? \qquad
ii. Explain your answer.

c. Calculate the pressure due to the water on diver C, given that the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
d. Calculate the total pressure on diver C given that atmospheric pressure is 100000 Pa .
e. The pressure due to the water only acting on diver D is 10000 Pa . Calculate the depth, h, of diver D.

4a. The diagram shows a power ring circuit diagram and an unconnected 13-A socket.

i. Wire \qquad is the live wire and its colour is brown.
ii Wire _ is the neutral wire and its colour is blue.
iii. Complete the circuit diagram by completing the missing socket 2 connections to the circuit.

4b. A $100-\mathrm{W}$ lamp on a 240 V supply is switched on for 30 minutes. Calculate:
i. current flowing through the heating element,
ii. resistance of the filament of the lamp,
iii. the number of kWh consumed.
5. Two small balls coated in metallic paint are suspended by long insulating strings from A and B as shown in figure 1 below.

Figure 1

Figure 2
a. Both balls in figure 1 are given a negative charge.
i. Complete figure 2 above to show the new positions of the balls.
ii. Choose the appropriate word to complete the sentence below from the following list: attract, unlike, force, repel, like, small.
The balls in figure 2 \qquad each other since \qquad charges repel each other.
b. The ball suspended from B is carefully moved and suspended from C without changing the size of the charges on both balls.
$\begin{array}{ll}\text { Complete figure } 3 \text { to show the } & \mathbf{1} \\ \text { new positions of the balls. }\end{array}$
ii. As the distance between the two balls carrying the same charge increases, the force of repulsion between them
A
B
C
\qquad -.

Figure 3
6. A boy drops a large stone from the top of a cliff. The time taken by the stone to strike the ground below is 2.5 s .
a. i. The initial velocity of the stone $=$ \qquad m / s. 1
ii. The initial acceleration of the stone is \qquad $\mathrm{m} / \mathrm{s}^{2}$.
iii. The acceleration of the stone is caused by the \qquad
iv. The velocity of the ball after it hits the ground = \qquad m / s.
b. Calculate:
i. the height of the cliff,
ii. the velocity with which the stone hits the ground.

Section B. Answer All Questions. This Section carries 45 marks.

1. Marica sets up the apparatus as shown in the diagram below in order to find the specific heat capacity \mathbf{c} of an unknown metal. The mass of the metal block is 2 kg .

The heater is switched on and the following results are obtained.

temperature $\theta /{ }^{\circ} \mathrm{C}$	20	25	30	35	40	45
time $\mathrm{t} /$ minutes	0	1	2	3	4	5

a. Plot a graph of temperature (y-axis) against time (x-axis) on the graph paper provided.
b. From your graph find the temperature of the block after 2.5 minutes. \qquad
c. From the graph find the time taken by the metal block to reach a temperature of $40^{\circ} \mathrm{C}$. \qquad
d. What will be the temperature of the metal block in this experiment after heating it for 3 more minutes? \qquad
e. How long will the metal block in this experiment take to reach a temperature of $50^{\circ} \mathrm{C}$? \qquad
f Calculate the specific heat capacity cof the metal block of mass 2 kg

2a. The figure below shows two freshly poured cups of hot tea. Cup \mathbf{A} is covered by a saucer while Cup B is left uncovered.

The graphs below show how the temperature of the tea in Cup A and the temperature of the tea in Cup B drops with time.

i. The temperature of the tea in cup A after 8 minutes is \qquad ${ }^{\circ} \mathrm{C}$
ii. The temperature of the tea in cup B after 8 minutes is ___ ${ }^{\circ} \mathrm{C}$
iii. The difference in temperature between the tea in cup A and that in cup B after 8 minutes is \qquad ${ }^{\circ} \mathrm{C}$
iv. The temperature of the tea in cup A drops to $60^{\circ} \mathrm{C}$ in approximately

$$
\ldots \text { minutes. }
$$

v. The temperature of the tea in cup B drops to $60^{\circ} \mathrm{C}$ in approximately
\qquad
vi. The temperature of the tea in cup A takes \qquad minutes longer than the tea in cup B to drop to $60^{\circ} \mathrm{C}$.
vii. Why does the tea in cup A take a longer time to cool than that of B ?

2b. The figures below represent three sheets of copper A, B and C, painted in different colours.

i. Surface \qquad absorbs heat energy very quickly.
ii. Surface \qquad is a very good emitter of thermal radiation.
iii. Surface \qquad is the best reflector of heat energy.

3a. Write down the meaning of these symbols:
i.

v.

ii.

vi.

iii.

vii.

iv.

viii.

3b. Nadia sets up the circuit below to carry out an experiment on a filament lamp.

i. $\quad M_{1}$ is the \qquad measuring \qquad in amperes.
ii. $\quad M_{2}$ is the \qquad measuring p.d. in \qquad .
iii. M_{1} has a \qquad resistance while M2 has a \qquad resistance.
iv. Is the lamp in the circuit switched ON or turned OFF? \qquad .

