SECONDARY SCHOOLS ANNUAL EXAMINATIONS 2006

Educational Assessment Unit - Education Division

FORM 4	PHY	/SICS	TIME:	1h 30 min
NAME:			С	
•	ons in the spaces presences of			Paper.
Where necessary to	ake the acceleration	due to gravity,	$g = 10 \text{ m/s}^2.$	
	of these formulae us			
W = mg F =	ma Energy = Po	ower x time	v = u + a	at $s = \underline{at^2}$
	ass x velocity	Pressure =	<u>force</u>	
Heat energy = ma	ass x specific heat		area nperature ch	ange
V = IR	P = VI	Q = I t	$R = R_1$	+ R ₂ + R ₃
1. Ryan of mass	fr All Questions. The 50 kg, running at 1. and both move Calculate:	5 m/s, jumps c	on to a station	nary trolley of
·	m of the trolley befo	ore Ryan jumps	on it.	
	ntum just before jum			
c. Calculate the t	total mass moving a	after Ryan jump	os on to the t	rolley.
	common velocity o	-	trolley as the	ey both

2. A battery-operated model car is travelling at a *uniform speed* along a level runway in the direction shown in the diagram. One external horizontal force F_A acting on the car is shown on the diagram.

a.	Force F _A acting against the motion of the car is called			
b.	i. ii.	Add to the diagram another horizontal force F_E acting on the car in the opposite direction to F_A F_E is referred to as the force.	1 2	
C.	The	resultant force acting on the car travelling at uniform speed is N.	1	
d.	i. ii.	State what happens to the speed of the car when force F_E is bigger than force F_A As force F_E gets bigger, force F_A gets but not to the same extent.	1 1	
e.	Calc i.	culate: the resultant force acting the model car given that force F_{E} is 5 N and force F_{A} is 2 N.	1	
	ii.	the acceleration produced by this force given that the mass of the model car is 2 kg.	2	
3.	The	figure shows an underwater photograph of four divers: A, B, C and D.		

b. i. Which diver has the greatest pressure due to the water?

Which two divers are under the

Give a reason to your answer.

ii. Explain your answer.

same pressure? _

i.

ii.

a.

1

1

1

- Calculate the pressure **due to the water** on diver C, given that the density C. of water is 1000 kg/m³.
 - 2

2

- d. Calculate the **total pressure** on diver C given that atmospheric pressure is 100 000 Pa.
- The pressure due to the water only acting on diver D is 10 000 Pa. e. Calculate the depth, h, of diver D.
- 2
- 4a. The diagram shows a power ring circuit diagram and an unconnected 13-A socket.

Wire ____ is the live wire and its colour is brown. i.

1 1

2

Wire is the neutral wire and its colour is blue. ii

- iii. Complete the circuit diagram by completing the missing socket connections to the circuit.
- **4b.** A 100-W lamp on a 240 V supply is switched on for 30 minutes. Calculate:
 - i. current flowing through the heating element,

2

ii. resistance of the filament of the lamp, 2

iii. the number of kWh consumed.

.	Two small balls coated in metallic paint are suspended by long insulating strings from A and B as shown in figure 1 below.				
	<u>A</u>	B C	Α	В	C
		Figure 1		Figure 2	2
1.	Both i. ii.	balls in figure 1 are given a negative charcomplete figure 2 above to show the ne Choose the appropriate word to complet the following list: attract, unlike, force, reached the balls in figure 2 charges repel each other.	w positio e the ser epel, like,	ntence be , <i>small.</i>	
-	C w	ball suspended from B is fully moved and suspended from ithout changing the size of the ges on both balls. Complete figure 3 to show the new positions of the balls.	Α	В	С
	ii.	As the distance between the two balls carrying the same charge increases, the force of repulsion between them			Figure 3
•		by drops a large stone from the top of a clie to strike the ground below is 2.5 s. The initial velocity of the stone = in the initial acceleration of the stone is The acceleration of the stone is caused the velocity of the ball after it hits the ground strong in the stone is caused.	m/s. m/s ² by the	² .	·
•	Calc i.	ulate: the height of the cliff,			
	ii.	the velocity with which the stone hits the	ground.		

Section B. Answer All Questions. This Section carries 45 marks.

 Marica sets up the apparatus as shown in the diagram below in order to find the specific heat capacity c of an unknown metal. The mass of the metal block is 2 kg.

The heater is switched on and the following results are obtained.

temperature θ / °C	20	25	30	35	40	45
time t / minutes	0	1	2	3	4	5

- a. Plot a graph of temperature (y-axis) against time (x-axis) on the graph paper provided.
- b. From your graph find the temperature of the block after 2.5 minutes. ______1
- c. From the graph find the time taken by the metal block to reach a temperature of 40 °C. _____
- d. What will be the temperature of the metal block **in this experiment** after heating it for 3 more minutes?
- e. How long will the metal block in this experiment take to reach a temperature of 50 °C? _____
- f Calculate the specific heat capacity **c** of the metal block of mass 2 kg given that the heat energy required to increase its temperature by 25 °C is 9000 J.

8

1

2a. The figure below shows two freshly poured cups of hot tea. **Cup A** is covered by a saucer while **Cup B** is left uncovered.

The graphs below show how the **temperature** of the tea in **Cup A** and **the temperature** of the tea in **Cup B** drops with **time**.

i. ii. iii.	The temperature of the tea in cup A after 8 minutes is °C The temperature of the tea in cup B after 8 minutes is °C The difference in temperature between the tea in cup A and that in cup B after 8 minutes is °C	1 1 2
iv.	The temperature of the tea in cup A drops to 60 °C in approximately minutes.	1
٧.	The temperature of the tea in cup B drops to 60 °C in approximately minutes.	1
vi.	The temperature of the tea in cup A takes minutes longer than the tea in cup B to drop to 60 °C.	2
vii.	Why does the tea in cup A take a longer time to cool than that of B?	1

2b. The figures below represent three sheets of copper A, B and C, painted in different colours.

- i. Surface _____ absorbs heat energy very quickly.
 ii. Surface _____ is a very good emitter of thermal radiation.
 2
 iii. Surface _____ is the best reflector of heat energy.
 2
- **3a.** Write down the meaning of these symbols:

İ۷.

viii.

1

3b. Nadia sets up the circuit below to carry out an experiment on a filament lamp.

i.	M ₁ is the	measuring	_ in amperes.	2
ii.	M ₂ is the	measuring p.d. in	·	2
iii.	M ₁ has a resis	stance while M2 has a	resistance.	2
iv.	Is the lamp in the circuit s	switched ON or turned OFF?		1