SECONDARY SCHOOLS FINAL EXAMINATIONS 2000 Educational Assessment Unit - Education Division

FORM 5	PHYSICS	TIME: 1 hr 45 min
NAME:		CLASS:
	s in the spaces provided on nown. The use of a calculate	•
Where necessary take t	he acceleration due to gravity,	$g = 10 \text{ m/s}^2$.

You may find some of these formulae useful. area of triangle = $\underline{base x height}$ area of trapezium = \underline{h} (sum of parallel sides) 2 $v = \underline{s}$ v = u + at $s = \underline{at^2}$ W = mg density = <u>mass</u> volume work done = F s PE = m g h P = work done KE = $\frac{mv^2}{2}$ time moment of a force = Force x perpendicular distance F = m a Pressure = Force $P = h \rho g$ momentum = mass x velocity area heat energy = mass x specific heat capacity x temperature change magnification = <u>height of image</u> = <u>image distance</u> height of object object distance refractive index = <u>sine (angle in air)</u> $v = f\lambda$ sine (angle in medium) sine (critical angle) = <u>1</u> refractive index V = I R P = VI = I^2 R R = $R_1 + R_2 + R_3$ R = $\frac{R_1 R_2}{R_1 + R_2}$ $\frac{N_p}{N_s} = \frac{V_p}{V_s} \qquad \qquad V_p I_p = V_s I_s$ nage 1

Section A. Answer All Questions. This Section carries 55 marks.

- The inside measurements of an empty box are, 1.0 m long, 75 cm wide and 0.2 m high. Calculate:

 a. the width of the box in metres,
 b. the volume in m³ of the air inside the box,
 c. the mass of the air inside the box given that the density of air is 1.1 kg/m³,
 [2]
 - d. the weight of the air inside the box.

2. The diagram below shows a metre rule AB resting at its centre on a fulcrum . A weight of 4 N is placed 0.3 m away from the fulcrum. Another force F is placed on the opposite side of the fulcrum to keep the rule horizontal.

a.	State the direction of the force F.	[1]
b.	State the direction of the moment of the force F.	[1]
C.	Calculate the size of force F.	[2]

- d. Calculate the total weight supported by the fulcrum given that the weight of the rule is 1 N.
- e. State the direction of the reaction at the fulcrum. [1]

[2]

[2]

- 3. Andrew carries a ball weighing 5 N up a flight of 20 steps each 0.15 m high, in 5 s. Given that Andrew weighs 595 N calculate:
 a. the total weight of Andrew and the ball, [1]
 b. the work done by Andrew on reaching the top of the stairs, [2]
 c. the power developed by Andrew, [2]
 d. the potential energy gained by the ball at the top of the stairs. [2]
- **4.** Martha cycles from her house to the supermarket each day. On a particular day her speed changes in the way shown on the graph.

- a. The graph shows that Martha accelerates uniformly during the first _____ seconds and decelerates uniformly during the last _____ seconds. [2]
- b. Martha's velocity along BC = _____ m/s.
- c. Calculate the **distance** between Martha's house and the supermarket. [2]
- d. Calculate the **average velocity** over the whole journey [2]

[1]

5. The diagram below shows the forces acting on a car travelling along a level road.

- b. Calculate the resultant force acting on the car and state its direction. [2]
- c. Describe the motion of the car.
- **6.** The image of a car parked at S is seen through the plane mirror by Paul standing at P but **not** by Maria standing at M.

- a. Draw a ray from S which reaches P after reflection at the mirror. [2] Include in your diagram the incident ray and the reflected ray.
- b. Is the image real or virtual?
- c. What can be said about the image distance and the object distance? [1]
- d. Explain why Paul finds it difficult to read the letters and the numbers on the number plate of the car even though he can see their image clearly.
- e. Explain why Maria standing at M cannot see the image of the car. [2]

[1]

[1]

7. The diagram below shows what happens to large water waves after they enter the harbour through the gap in the breakwater.

Section B. Answer All Questions. This Section carries 45 marks.

- **1.** This question is about magnetic fields, electromagnets and electromagnetic induction.
- **a.** The bar magnet shown below has a magnetic field around it.
 - i. Draw the magnetic field of the bar magnet, showing clearly its direction.

N	S
---	---

ii What item of apparatus can be used to determine the direction of the field?

[2]

[2]

b. An electromagnet is made by winding several turns of insulated wire round an iron nail. The ends of the wire are then connected to a d.c. supply and some iron pins are placed near the electromagnet as shown.

- i. What happens to the iron pins when the current is switched on ? [2]
- ii. Suggest two ways which could increase the strength of the electromagnet.

[2]

iii. When small pieces of copper are placed close to a the large nail, it does not attract them because copper is a _____ material. [2]

page 6..

c. The diagram shows an apparatus that can be used to show that a current is induced in a coil when it cuts a magnetic field.

When the magnet is pushed into the coil, the **galvanometer pointer** deflects **clockwise**.

- i. State the direction of motion, if any, of the **galvanometer pointer** when the magnet is pulled out of the coil.
- When the magnetic polarity induced at the end K of the coil is north, end [1]
 L is a _____ pole.
- iii. State what happens to the **size** of the induced current if the magnet is moved faster in or out of the coil. [2]

2. This question is about an experiment to find the elastic limit of a steel wire.

a. Complete the missing labels from the diagram of the experimental set-up .

b. On the axes provided below, sketch the graph of extension [y-axis] against [7] load [x-axis] you expect when the steel wire is loaded beyond its elastic limit. On your graph mark the elastic limit with the letter 'E'.

[2]

3. This question is about current electricity.

a. The diagram below represents a simple circuit in which the filament lamp L lights.

b. The table below shows how the current I through a resistor varies when the potential difference **p.d.** across it changes.

pd. / V	0	4	8	12	16	20
I/A	0	2	4	6	8	10

	n	nge 8.
iv.	Does the resistor obey Ohm's Law?	
iii.	Find the resistance of the resistor.	
ii.	From the graph find the value for the current when the potential difference is 10 V.	
i.	Plot a graph of current [y-axis] against potential difference [x-axis] on the graph paper provided.	