SECONDARY SCHOOLS ANNUAL EXAMINATIONS 2000 Educational Assessment Unit - Education Division

FORM 3	PHYSICS	TIME: 1 hr 30 min
NAME:		CLASS:
Answer ALL questions All working must be sho		l on the Examination Paper. culator is allowed.
You may find some of	these formulae useful.	
acceleration due to grav	ity g = 10 m/s²	
area of triangle = <u>base x</u> 2	<u>height</u> area of trapezi	ium = <u>h</u> (sum of parallel sides)
	-	= m g density = <u>mass</u> volume
work done = Fs	PE=mghP=	$\frac{\text{work done}}{\text{time}} \qquad \text{KE = } \frac{\text{mv}^2}{2}$
moment of a force = Fo	orce x perpendicular dis	stance
magnification = <u>heigh</u> heigh		<u>distance</u> distance
refractive index = <u>sine</u> sine	e (angle in air) e (angle in medium)	, ,
sine (critical angle) = _	1 refractive index	
frequency = <u>number of</u> tim		
$v = f\lambda$	•	

Section A. Answer All Questions. This Section carries 55 marks.

1. Complete the following Table:

No:	Physical Quantity	S.I. symbol	Value	Value in S.I. Units
a.	distance		3.5 km	3500 m
b.	time	t	2.5 minutes	
C.	energy	E	4 kJ	
d.	mass		1500 g	

[1]
[1]
[1]
[2]

page 2.,

2.	a.	i.	State ONE difference between vectors and scalars.			
		ii.	An example of a vector is	[1]		
		iii.	An example of a scalar is	[1]		

b. The diagram below shows the **three** forces acting on a wooden block while being pushed along a **rough** surface S. Force F₁ is the force pushing the wooden block forwards.

i.	F ₂ is the	[1]
ii.	F ₃ is the force of between the wooden block and the rough surface S.	[1]
iii.	Calculate the size of the resultant force F acting on the wooden block given that F_3 is 5 N, F_2 is 3 N and the pushing force F_1 is 12 N.	[3]
iv.	Which force will not exist if the surface S is a smooth surface?.	[2]

3. The diagram shows a device for lifting water from the sea. The weight of the rod AB can be ignored.

a.	The perpendicular distance between the bucket and the pivot Z is m.	[2]
b.	Calculate the size of the moment of the bucket about the pivot Z .	[2]
C.	The direction of rotation caused by the bucket about the turning point Z is	[2]
d.	Calculate the downward force F to balance the bucket.	[4]

4. a. A driver of a car has a thinking time of 0.7 s, that is, there is a delay of 0.7 s between the driver deciding to stop the car and pressing the brake pedal. If the car is travelling at 20 m/s, calculate the distance covered by the car [2] during the thinking time. b. Once the brake pedal has been pressed, the car decelerates uniformly and stops in 3.0 s. i. Draw on the figure below, a graph, to show how the speed of the car [3] changes during the last 3.0 s. speed / m/s 30 25 20 15 10 5 0 time / s 2 3 0 ii. From your graph, find the distance covered by the car during braking. [3] iii. Calculate the total distance covered by the car, between the driver [2] deciding to stop the car and the car finally coming to rest.

- •	n is 6250 J.	[1]
a.	What is the work input?	
b _.	Calculate the work done [or work output] by the crane.	[2]
C.	Calculate the efficiency of the crane.	[3]
d.	How much energy is wasted?	[2]
е.	What happens to the wasted energy?	[2]
a	The following represent ray diagrams Figure A Figure B Figure C Figure D Figure E	
а		[1] [1] [1] [1]

Section B. Answer All Questions. This Section carries 45 marks.

1. This question is about the Kinetic Theory and Brownian Motion.

Ac	cording to the kinetic theory of matter:	
i.	The three states of matter are:, and	[3]
ii.	All matter is made up of	[1]
iii.	The particles which make up all matter possess	[1]
İ۷.	The motion of the particles in a is described as vibrational.	[1]
۷.	The motion of the particles in a is described as random.	[1]

- b. An experiment was set up to show Brownian Motion in air using a smoke cell as shown in the diagram below.
 - i. Fill in the missing labels in the diagram below

lamp cylindrical lens	
The particles which can be observed are the	particles.
The particles showing Brownian Motion are the	_ particles.
The particles causing Brownian Motion are the	narticles
	particles.

2. This question is about the refractive index and critical angle of a semicircular transparent plastic block.

The following table of results is obtained from an experiment to find the refractive index and critical angle of a semicircular transparent plastic block .

angle in plastic /°	0	10	20	30	40	45	50
angle in air /°	0	13	27	41	57	68	90

Plot a graph, on the graph paper provided, of angle in plastic [x-axis] against angle in air [y-axis]. Draw the BEST SMOOTH CURVE.	[
From your graph, find the angle in air when the angle in plastic is 35°.	
From your graph, find the angle in plastic when the angle in air is 25°.	
From the table of results, it can be concluded that when the angle in plastic is, the angle in air is 90°. In this situation, the angle in the plastic block is called the angle.	[
i. From the table of results it can be seen that when the angle in air is 41°, the angle in plastic is	į
	From your graph, find the angle in air when the angle in plastic is 35°. From your graph, find the angle in plastic when the angle in air is 25°. From the table of results, it can be concluded that when the angle in plastic is, the angle in air is 90°. In this situation, the angle in the plastic block is called the angle. i. From the table of results it can be seen that when the angle in air is

PLEASE TURN OVER FOR QUESTION 3.

3.	This	question	is	about	water	waves.
----	------	----------	----	-------	-------	--------

Two students set up a ripple tank in the laboratory to study the properties of waves.

	re set up in the ripple tank at a frequency of 5 Hz. elength of the waves is 0.1 m long.
alculate the velocity of the wave.	
	of the second of
	ents now produced straight waves to study the behaviour of hen passing through gaps.
Expla	in how you would produce a straight water wave.
i. The :	
i. The s	students place a barrier with a gap as shown below.
. The s	students place a barrier with a gap as shown below.