

INSTRUCTIONS TO CANDIDATES

- Answer all questions. There are 20 questions to answer.
- Each question carries 1 mark.
- Calculators, protractors and other mathematical instruments are not allowed.
- You are not required to show your working. However space for working is provided if you need it.

No.	Question	Space for Working
1	Write down the value of $1-\frac{2}{3} \times \frac{3}{4}$. Answer: \qquad	
2	Write thirty thousand and three in figures. Answer: \qquad	
3	One of the angles of an isosceles triangle is 100°. What is the size of each of the other angles? Answer: \qquad	
4	Write down the largest prime number less than 40. Answer: \qquad	
5	A television programme starts at ten minutes to eight. It lasts twenty-five minutes. At what time does the programme finish? Answer: \qquad	
6	The sum of all the factors of 6 is: A. 5 B. 6 C. 11 D. 12 Answer: \qquad	
7	How many minutes are there in a whole day? Answer: \qquad	
8	Subtract 25 cm from 2 metres, giving your answer in centimetres. Answer: \qquad _cm	

No.	Question	Space for Working
9	In an examination 60% of the maximum mark is required for a pass. The maximum mark is 200 . What is the pass mark? Answer: \qquad	
10	A committee is made up of four men and a number of women. A chairperson is selected at random. The probability that the chairperson is a man is $\frac{2}{3}$. How many women are there in the committee? Answer: \qquad	
11	A car was bought for $€ 10000$. After two years it was sold for $€ 7000$. What is the percentage loss? Answer: \qquad	
12	Which one of the following is not equal to $\frac{1}{2} a b$? A. $\frac{a b}{2}$ B. $a \times \frac{b}{2}$ C. $b \times \frac{a}{2}$ D. $\frac{1}{2 a} \times b$ Answer:	
13	Simplify: $\frac{6 x^{2}}{5} \times \frac{15}{12 x y}$ Answer:	
14	Given that $x=p r+q$, which one of the following is true? A. $r=\frac{x-q}{p}$ B. $r=x-q-p$ C. $r=\frac{x}{p+q}$ D. $r=\frac{x-p}{q}$ Answer:	

No.	Question	Space for Working
15	The value of $\left(\frac{1}{3}\right)^{-2}$ is A. $\frac{1}{9}$ B. $\frac{1}{6}$ C. 6 D. 9 Answer: \qquad	
16	The straight line $y=2 x-3$ passes through one of the following points. Which one? A. $(1,1)$ B. $(2,1)$ C. $(2,-1)$ D. $(1,2)$ Answer:	
17	The bearing of B from A is 040°. What is the bearing of A from B?	
18	Which one of the following is true? A. $x+y=180^{\circ}$ B. $x+y=90^{\circ}$ C. $x+2 y=180^{\circ}$ D. $x+2 y=90^{\circ}$ Answer: \qquad	
19	Given that $A B=\sqrt{x} \mathrm{~cm}$, find the value of x. Answer: $x=$ \qquad	
20	Write the missing number: $\mathbf{2}, 100 \%, 0.5$,	

SECONDARY SCHOOL ANNUAL EXAMINATIONS 2008

B

FORM 5 MATHEMATICS - SCHEME B (Main Paper B) TIME: 1h 40min

1	2	3	4	5	6	7	8	9	10	11	12	13	NC	Main	Global

Name: \qquad Class: \qquad

Calculators are allowed but the necessary working must be shown. Answer all questions.

1. 675 students attend Hal Ballut Secondary School.
56% of these students are girls.
Two-thirds of the boys passed the mathematics examination.
(i) What percentage of pupils attending the school are boys?
(ii) How many boys passed the mathematics examination?

Answer: (i)
(ii) \qquad
(3 marks)
2. The diagram shows the cross-section of a swimming pool.
(i) Work out the area of the cross-section.

Area $=$ \qquad m^{2}

The length of the pool is 12 metres.
(ii) Work out the capacity, in litres, of the pool. $\left(1 \mathrm{~m}^{3}=1000\right.$ litres $)$
\qquad litres
3. The volume of a cone is given by the formula $V=\frac{\pi r^{2} h}{3}$.
(i) Make r the subject of the formula.

$r=$ \qquad
(ii) The volume of a cone is $124 \mathrm{~cm}^{3}$ and its height is 6.7 cm .

Work out the value of r, correct to 1 decimal place.

$$
r=
$$

\qquad cm
4. A man stands 20 metres away from a tower. He observes the angles of elevation of the top and bottom of a flagstaff standing on the tower as 62° and 60° respectively.
Work out, correct to 2 decimal places:
(i) the height of the tower,
(ii) the height of the flagstaff.

Answer: (i) \qquad m, (ii) \qquad m
\square
Name:
5. ABCD is a square and ABP is an equilateral triangle.
(a) Prove that triangles ADP and BCP are congruent.

(b) Write down the size of $\angle \underline{\mathrm{DPC}}$.
$\angle \mathrm{DPC}=$ \qquad
(5 marks)
6. The LOGO statement draws a regular polygon.

PD REPEAT 6 [FD 50 RT 60]

(i) Fill in:
(a) The polygon is a regular \qquad .
(b) The perimeter of this polygon is \qquad turtle steps.
(c) The order of rotational symmetry of the polygon is \qquad .
(ii) Complete the LOGO statement that will draw a regular octagon having a perimeter of 480 turtle steps.

PD REPEAT \qquad [FD \qquad RT \qquad]
7. (i) Work out the gradient of line A.
gradient $=$ \qquad
(ii) Write down the equation of line A .
\qquad
(iii) On the same graph, draw line B , whose equation is $x+y=5$.
(iv) Write down the coordinates of the point
 of intersection of line A and line B.
\qquad
(v) Write down the equation of line C that is parallel to line A and passes through $(0,0)$.
\qquad
8. (a) Factorise the numerator and denominator and simplify: $\frac{3 p-6 q}{5 p-10 q}$

Answer: \qquad
(b) Solve the simultaneous equations: $\begin{gathered}4 a+5 b=4 \\ 3 a+2 b=10\end{gathered}$

$$
a=\ldots, b=
$$

\qquad
\qquad Class: \qquad
9. (a) Using ruler, compasses and pencil only construct
(i) a triangle ABC with $\mathrm{AB}=7.2 \mathrm{~cm}, \mathrm{BC}=6.5 \mathrm{~cm}$ and $\mathrm{AC}=5.5 \mathrm{~cm}$,
(ii) the perpendicular bisectors of $A B$ and $B C$.

(b) Mark the point of intersection of the two perpendicular bisectors as P. Measure and write down the length of AP.

$$
\mathrm{AP}=
$$

\qquad cm
(c) Draw a circle with centre \mathbf{P} and radius AP. What do you notice about this circle?
\qquad
10. O is the centre of a circle passing through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D} . \mathrm{PCQ}$ is a tangent to the circle at C .

Write down the size of the following angles, giving reasons for your answers.
(i) $\angle \mathrm{ABC}$
$\angle \mathrm{ABC}=$ \qquad reason:
(ii) $\angle \mathrm{OCA}$
$\angle \mathrm{OCA}=$ \qquad reason:
(iii) $\angle \mathrm{ACQ}$
$\angle \mathrm{ACQ}=$ \qquad reason:
(iv) $\angle \mathrm{ADC}$
$\angle \mathrm{ADC}=$ \qquad reason:
11. (a) Christine and Alan each receive a weekly allowance of $€ 24$.

The pie chart shows how Christine spends her allowance.
The bar chart shows how Alan spends his allowance.

(i) How much does Christine spend on stationery? \qquad
(ii) On which item does Alan spend $€ 6$? \qquad
(iii) Who saves more money, Alan or Christine? Explain your answer.
(iv) On which item do Alan and Christine spend the same amount of money? State how much they spend.
(b) The data shows the birth weights, in kilograms, of 10 babies.
3.5
4.1
2.6
3.5
3.7
4.2
4.2
2.7
3.5
4.1

Work out the modal and median weight.

$$
\text { Mode }=
$$

\qquad kg, Median = \qquad kg
12. (a) The base of triangle PQR is $2 x \mathrm{~cm}$ and the height is $(5-x) \mathrm{cm}$.
(i) Show that the area, A, of the triangle is given by $A=5 x-x^{2}$.

(ii) Explain why x can never be equal to 0 .
(b) (i) Complete the table for $A=5 x-x^{2}$ for values of x from 0.5 to 4.5.

x	0.5	1	2	2.5	3	4	4.5
$5 x$	2.5		10			20	
$-x^{2}$	-0.25		-4			-16	
A	2.25		6			4	

(ii) On the graph paper provided, draw the graph of $A=5 x-x^{2}$ for values of x from 0.5 to 4.5. Use 2 cm for 1 unit on both axes.
(iii) Use your graph to find the maximum area of triangle PQR .

Maximum area $=$ \qquad cm^{2}

13.

(a) Describe the transformation that maps shape T to shape A .
\qquad
(b) Describe the transformation that maps shape T to shape B .
\qquad
(c) Describe the transformation that maps shape T to shape C .
\qquad
(d) Shape T is enlarged by a scale factor of 2 , through the point $(5,5)$. Draw the image of shape T .

