SECONDARY SCHOOL ANNUAL EXAMINATIONS 2008

FORM 5 MATHEMATICS - SCHEME A (Non-Calculator Paper) TIME: 20 minutes

Name: \qquad Class: \qquad

Mark

INSTRUCTIONS TO CANDIDATES

- Answer all questions. There are 20 questions to answer.
- Each question carries 1 mark.
- Calculators, protractors and other mathematical instruments are not allowed.
- You are not required to show your working. However space for working is provided if you need it.

No.	Question	Space for Working
1	Write down the value of $\mathbf{1}-\frac{2}{3} \times \frac{\mathbf{3}}{\mathbf{4}}$. Answer: \qquad	
2	Write thirty thousand and three in figures. Answer: \qquad	
3	One of the angles of an isosceles triangle is 100°. What is the size of each of the other angles? Answer: \qquad	
4	Write down the largest prime number less than 40. Answer: \qquad	
5	A television programme starts at ten minutes to eight. It lasts twenty-five minutes. At what time does the programme finish? Answer: \qquad	
6	The sum of all the factors of 6 is: A. 5 B. 6 C. 11 D. 12 Answer: \qquad	
7	How many minutes are there in a whole day? Answer: \qquad	
8	Subtract 25 cm from 2 metres, giving your answer in centimetres. Answer: \qquad cm	

No.	Question	Space for Working
9	In an examination 60% of the maximum mark is required for a pass. The maximum mark is 200 . What is the pass mark? Answer: \qquad	
10	A committee is made up of four men and a number of women. A chairperson is selected at random. The probability that the chairperson is a man is $\frac{2}{3}$. How many women are there in the committee? Answer: \qquad	
11	A car was bought for $€ 10000$. After two years it was sold for $€ 7000$. What is the percentage loss? Answer: \qquad	
12	Which one of the following is not equal to $\frac{1}{2} a b$? A. $\frac{a b}{2}$ B. $a \times \frac{b}{2}$ C. $b \times \frac{a}{2}$ D. $\frac{1}{2 a} \times b$ Answer:	
13	Simplify: $\frac{6 x^{2}}{5} \times \frac{15}{12 x y}$ Answer:	
14	Given that $x=p r+q$, which one of the following is true? A. $r=\frac{x-q}{p}$ B. $r=x-q-p$ C. $r=\frac{x}{p+q}$ D. $r=\frac{x-p}{q}$ Answer:	

No.	Question	Space for Working
15	The value of $\left(\frac{1}{3}\right)^{-2}$ is A. $\frac{1}{9}$ B. $\frac{1}{6}$ C. 6 D. 9 Answer: \qquad	
16	The straight line $y=2 x-3$ passes through one of the following points. Which one? A. $(1,1)$ B. $(2,1)$ C. $(2,-1)$ D. $(1,2)$ Answer: \qquad	
17	The bearing of B from A is 040°. What is the bearing of A from B?	
18	Which one of the following is true? A. $x+y=180^{\circ}$ B. $x+y=90^{\circ}$ C. $x+2 y=180^{\circ}$ D. $x+2 y=90^{\circ}$ Answer: \qquad	
19	Given that $A B=\sqrt{x} \mathrm{~cm}$, find the value of x. Answer: $x=$ \qquad	
20	Write the missing number: $2,100 \%, 0.5$,	

SECONDARY SCHOOL
ANNUAL EXAMINATIONS 2008
Educational Assessment Unit - Education Division

FORM 5 MATHEMATICS - SCHEME A (Main Paper) TIME: 1h 40min

1	2	3	4	5	6	7	8	9	10	11	12	13	Total Main	Non Calculator	GLOBAL MARK

DO NOT WRITE ABOVE THIS LINE

Name: \qquad Class: \qquad
CALCULATORS ARE ALLOWED BUT ALL NECESSARY WORKING MUST BE SHOWN. ANSWER ALL QUESTIONS.

1. 675 students attend Fal Ballut Secondary School.
56% of these students are girls.
Two-thirds of the boys passed the mathematics examination.
(a) What percentage of pupils attending the school are boys?
(b) How many boys passed the mathematics examination?

Answer: (a) \qquad , (b) \qquad (3 marks)
2. The diagram shows the cross-section of a swimming pool.
(a) Work out the area of the cross-section.

Area $=$ \qquad m^{2}

The length of the pool is 12 metres.
(b) Work out the capacity, in litres, of the pool. $\left(1 \mathrm{~m}^{3}=1000\right.$ litres $)$

Capacity = \qquad litres
3. The volume of a cone is given by the formula $V=\frac{\pi r^{2} h}{3}$.
(a) Make \boldsymbol{r} the subject of the formula.

$$
\boldsymbol{r}=
$$

\qquad
(b) The volume of a cone is $124 \mathrm{~cm}^{3}$ and its height is 6.7 cm .

Work out the value of \boldsymbol{r}, correct to $\mathbf{1}$ decimal place.

$$
\boldsymbol{r}=
$$

\qquad cm
4. A man stands 20 metres away from a tower. He observes the angles of elevation of the bottom and top of a flagstaff standing on the tower as 60° and 62° respectively.
Work out, correct to 2 decimal places:
(a) the height of the tower,
(b) the height of the flagstaff.

Answer: (a) \qquad m, (b) \qquad m
\square
Name:
Class:
5. ABCD is a square and ABP is an equilateral triangle.
(a) Prove that triangles ADP and BCP are congruent.

(b) Write down the size of $\angle \mathrm{DPC}$.
$\angle \mathrm{DPC}=$ \qquad
6. The LOGO statement draws a regular polygon.

PD REPEAT 6 [FD 50 RT 60]

(a) Fill in:
(i) The polygon is a regular \qquad .
(ii) The perimeter of this polygon is \qquad turtle steps.
(iii) The order of rotational symmetry of the polygon is \qquad .
(b) Complete the LOGO statement that will draw a regular octagon having a perimeter of 480 turtle steps.

PD REPEAT \qquad [FD \qquad RT \qquad]
7. (a) Write down an inequality to describe the range of numbers shown on each of these number lines. NOTE: (i) is worked out for you.
(i)

Answer: \qquad
(ii)

Answer:
(iii)

(b) Solve the following inequality and illustrate your solution on the number line.

$$
2-3 x \geq 6-x
$$

8. (a) The table on the right shows a set of matching p and q values where p is directly proportional to the cube of q.

p	85.75	182.25	549.25
q	3.5	4.5	6.5

Use the values given to find a formula for p in terms of q. Show all your working.

Answer:

Name:

\qquad Class: \qquad
(b) The table on the right shows a set of matching s and t values where s is inversely proportional to t.

s	$\frac{1}{4}$	1	5
t	4	1	

(i) Use the values given to find a formula for s in terms of t.
(ii) Hence or otherwise write down the missing value in the table.

Answer: \qquad

Answer: \qquad
(c) The range within which a number lies is shown on the number line.

To what accuracy, in significant figures, is the number given?

Answer: \qquad
(d) Use the number line given to illustrate the range (lower and upper bounds) within which $\mathbf{7 3 0}$ lies, when given correct to the nearest ten.

9. (a) P, Q, R and S are four points on the circumference of the circle shown.
$A P B$ is a tangent to the circle at P.
Angle $\mathrm{PQR}=127^{\circ}$ and angle $\mathrm{APQ}=24^{\circ}$.
Show all your working and give reasons for your answers.

Find $\angle \mathrm{QSR}$.

(b) The diagram shows two circles touching at P . APB and CPD are straight lines such that A and C lie on one circle and B and D lie on the other circle.

TPS is a tangent to both circles at P .
$\angle \mathrm{APS}=x^{\circ}$.

Prove, giving reasons, that AC is parallel to BD .

10. Two sisters, Maria and Carmen, are both sitting for their Mathematics SEC examination for the first time. Table 1 shows the probability that they will pass the exam at the May session.

	Probability of passing at May session
Maria	0.6
Carmen	0.7

Table 1
(a) Work out the probability that both Maria and Carmen will pass the exam at the May session.

Answer: \qquad
(b) Work out the probability that only one of the sisters will pass the exam at the May session.

Answer:
(c) Work out the probability that at least one of the sisters will pass the exam at the May session.

Answer:

Table 2 shows the probability that they will pass the exam at the September session, if they fail at the May session.

	Probability of passing at September session, if they fail at May session
Maria	0.8
Carmen	0.7

Table 2
(d) Work out the probability that Carmen will pass the exam either at the May session or at the September session.
\qquad
11. Patrick drives his car to work. He increases his velocity at a constant rate for the first 20 seconds (AB). He then travels at a steady velocity (BC).
He sees a speed camera sign which also shows a speed limit, so he slows down at a constant rate until he reaches a speed which is the same as the speed limit (CD). He then continues driving at a steady velocity again (DE).
The diagram below shows Patrick's journey with corresponding line segments AB , BC, CD and DE.

(a) Write down the maximum velocity during the journey, in \mathbf{m} / \mathbf{s}.

Answer: \qquad m/s
(b) Work out how far Patrick travels while travelling at the maximum velocity. Give your answer in metres.

Answer: \qquad m
(c) What was the speed limit shown on the speed camera sign? Give your answer in $\mathbf{k m} / \mathrm{h}$ and show all your working.

Answer: \qquad km/h
(d) Work out the gradient of line segment AB . Explain what the gradient of AB represents.

Answer: gradient = \qquad
12. A group of boys took part in a sack race organised during a village fun day. The box plot A shows the distribution of the times in seconds taken by the boys to complete the race.

(a) What percentage of the boys took more than 40 seconds to complete the race?
(b) A different race for girls was also organised. Below is some information about the distribution of the times in seconds taken by the girls to complete the race.

A quarter of the girls took 32 seconds or less, the fastest taking 26 seconds. A quarter of the girls took 43 seconds or more, the slowest taking 50 seconds. The median time was 42 seconds.

Complete box plot \mathbf{B} to show this information.
(c) Which one of the following statements is true? Explain your answer by referring to the box plots.
(i) "The boys' times are generally faster than the girls' ".
(ii) "The girls' times are generally faster than the boys' ".
(d) The central half of the data shows that:
"the spread of the times for boys and girls are almost the same".
(i) What feature of the box plots shows that this statement is true?
(ii) What is the central half of the data called?
A) Upper quartile
B) Interquartile range
C) Median
D) Range
13. The table shows values of x and y for $y=\frac{12}{x}$.
The values of x and y have been

x	-6	-4	-3	-2	-1.5	-1	-0.75	0
y	-2	-3	-4	-6	-8	-12	-16	not defined

(a) On the same axes draw the graph of $y=\frac{12}{x}$ for values of x from 0.75 to 6 .
(b) On the same axes draw the graph of $y=x^{2}$ for values of x from -4 to 4 .
(c) Explain how you can use your graphs to find an estimate for the cube root of 12 .

All working must be shown.

