SECONDARY SCHOOL ANNUAL EXAMINATIONS 2008
DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION
Educational Assessment Unit

FORM 4 MATHEMATICS-Scheme B (Non-Calculator Paper) TIME: 20 minutes

Name \qquad Class \qquad

Instructions to Candidates

- Answer all questions. There are 20 questions to answer.
- Each question carries 1 mark.
- Calculators, protractors and other mathematical instruments except rulers are not allowed.
- You are not required to show your working. However space for working is provided if you need it.

No.	QUESTION	Space for Working if Required
1	Which of the following is the reciprocal of $1 \frac{2}{5}$? (a) $\frac{7}{5}$ (b) $5 \frac{1}{2}$ (c) $\frac{5}{7}$ (d) $2 \frac{1}{5}$ Ans	
2	Write the recurring decimal 0.6 as a fraction. Ans \qquad	
3	Write the number 0.00384 in standard form.	
4	A train travels 22 km in 10 minutes. Calculate the average speed of the train in km / h. Ans	
5	A domestic reverse osmosis system uses three stages to filter tap water. Each stage has a cartridge which should be replaced periodically as shown: The system starts with new cartridges. After how many years should the three cartridges be replaced all at the same time? Ans	

\qquad Class \qquad

No.	QUESTION	Space for Working if Required
6	This container has a capacity of $\frac{3}{4}$ litre. How many $\frac{1}{8}$ litre glasses can be filled from this container?	
7	 The graphs show the distance and time for three journeys A, B and C. Which is the slowest journey? Ans \qquad	
8	11 trees are planted at equal intervals along a street 90 m long. If there is a tree at each end of the street, calculate the distance between the $3^{\text {rd }}$ and the $8^{\text {th }}$ tree. Ans	

No.	QUESTION	Space for Working if Required
9	Write down the length of the hypotenuse. Ans	
10	Which of the following is the height of the parallelogram? (a) $4 \cdot 1 \mathrm{~cm}$ (b) 5.9 cm (c) 4.9 cm (d) $2 \cdot 1 \mathrm{~cm}$	
11	Write down the missing terms in the following sequence: $6,7,$ \qquad , 15, 22, 31, 42, \qquad .	
12	Simplify the expression: $6 x+3 y+2 x-y$	
13	Factorise the expression: $4 a b-2 a c$	

Question	1	2	3	4	5	6	7	8	9	10	11	Total Main	Non Calculator	Global Mark
Mark														

DO NOT WRITE ABOVE THIS LINE

Name: \qquad Class: \qquad

Calculators and mathematical instruments are

 allowed but all necessary work must be shown
ANSWER ALL QUESTIONS

1. 5 men take 90 minutes to dig a trench.
(a) How long will 3 men working at the same rate take to dig the trench?

Ans \qquad
(b) Each of these three men is paid $€ 4 \cdot 50$ an hour. How much will the three men earn altogether?

Ans \qquad
2. (a) A ship sailed 28 km NW from A to B and then 19 km SW from B to C.
(i) Complete and label the triangle ABC .
(ii) What is the size of $\angle \mathrm{ABC}$?

Ans \qquad
(iii) Calculate the straight-line distance of the ship from its starting position. Give your answer correct to one decimal place.

Ans
(b) Use Pythagoras' theorem to find which of these two triangles is a right-angled triangle. Show your working.

Ans: The right-angled triangle is \qquad .
\qquad
3. (a) Given that $2^{x}=\frac{1}{8}$ then $x=$ \qquad
(b) Given that $6^{0}=y$ then $y=$ \qquad
(c) Given that $p^{-3} \times p^{7}=p^{z}$ then $z=$ \qquad
(d) Given that $\frac{k^{6} \times k^{2}}{k^{3}}=k^{w}$ then $w=$ \qquad
4. (a) OAB is a sector of a circle of radius 15 cm . Calculate the length of the arc AB correct to the nearest cm .

Ans \qquad
(b) Jimmy has enough paint to cover an area of $20 \mathrm{~m}^{2}$. Calculate correct to 1 decimal place, the radius of the biggest circle that he can paint.

Ans \qquad
(8 marks)
5.

Scale: $1 \mathrm{~cm}=1 \mathrm{~km}$

A helicopter flies in a straight line from Rabat to Sliema.
(a) Draw a line which shows the journey.
(b) Measure the map distance from Rabat to Sliema. \qquad cm
(c) What is the distance travelled in km ? \qquad km
(d) Mark, measure and write down the three figure bearing from Rabat to Sliema. \qquad \circ
6. (a) The $n^{\text {th }}$ term of a sequence is $3 n^{2}-4$. Calculate the $5^{\text {th }}$ term.
(b) Simplify the expression: $\frac{3 x}{2}-\frac{4 x}{5}$
(c) Martin's age is 3 years more than twice Clive's age.
(i) Let Clive be x years old and write an expression in x for Martin's age.

Ans \qquad
(ii) How old is Martin if Clive is $2 \frac{1}{2}$ years old?

Ans \qquad
(7 marks)
7.

The angle of depression of R from P is 37°.
(a) Angle $x=$ \qquad Give a reason: \qquad .
(b) Calculate the length PR correct to three significant figures.

Ans \qquad
8. (a) Complete the tables for the graphs of $\mathbf{y}=\mathbf{2 x}-\mathbf{1}$ and $\boldsymbol{y}=\boldsymbol{x}^{2}+\mathbf{2 x}-\mathbf{5}$.

$\mathbf{y}=\mathbf{2 x}-\mathbf{1}$			
x	-2	-1	1
y	-5		

$$
y=x^{2}+2 x-5 .
$$

\boldsymbol{x}	-4	-3	-2	-1	0	1	2
x^{2}	16	9		1			4
$+2 x$	-8		-4	-2	0	2	
-5	-5	-5	-5	-5	-5	-5	-5
\boldsymbol{y}	3	-2			-5		

(b) Draw the two graphs on the grid below.

(c) The coordinates of the two points of intersection are: (,) and (,).
9. The diagram shows a regular octagon. Calculate the angles marked x°, y° and z°.

Ans $x=$ \qquad
$y=$ \qquad
$z=$ \qquad
(6 marks)
10.
(a) Rotate shape $\mathrm{A} 90^{\circ}$ anticlockwise about point O . Call it B .
(b) Translate A using the translation vector $\left[\begin{array}{r}5 \\ -1\end{array}\right]$. Call it C.
(c) Draw the mirror line that reflects B onto C.

11. A cuboid has two opposite faces marked D, another two opposite faces marked E and the remaining two faces marked F. Bernard rolled the cuboid on the floor 500 times. He also recorded which face it landed on. The following are his results.

Face D	Face E	Face F
210	$?$	105

(a) How many times did the cuboid land on a face marked E ? \qquad
(b) What is the probability that the cuboid lands on a face marked F? \qquad
(c) If Bernard throws the cuboid another 150 times, how many times is it probably going to land on a face marked D ?

