Mathematics I, II and III (9465, 9470, and 9475)

General Introduction

There are two syllabuses, one for Mathematics I and Mathematics II, the other for Mathematics III. The syllabus for Mathematics I and Mathematics II is based on a single subject Mathematics Advanced GCE. Questions on Mathematics II are intended to be more challenging than questions on Mathematics I. The syllabus for Mathematics III is wider.

In designing the syllabuses, the specifications for all the UK Advanced GCE examinations, the Scottish Advanced Higher and the International Baccalauriat were consulted.

Each of Mathematics I, II and III will be a 3-hour paper divided into three sections as follows:

Section A (Pure Mathematics)	eight questions
Section B (Mechanics)	three questions
Section C (Probability and Statistics)	two questions

All questions will carry the same weight. Candidates will be assessed on the six questions best answered; no restriction will be placed on the number of questions that may be attempted from any section. Normally, a candidate who answers at least four questions well will be awarded a grade 1 .

The marking scheme for each question will be designed to reward candidates who make good progress towards a complete solution.

Syllabuses

The syllabuses given below are for the guidance of both examiners and candidates. The following points should be noted.

1. Questions may test candidates' ability to apply mathematical knowledge in novel and unfamiliar ways.
2. Solutions will frequently require insight, ingenuity, persistence and the ability to work through substantial sequences of algebraic manipulation.
3. Some questions may be largely independent of particular syllabus topics, being designed to test general mathematical potential.
4. Questions will often require knowledge of several different syllabus topics.
5. Examiners will aim to set questions on a wide range of topics, but it is not guaranteed that every topic will be examined every year.
6. Questions may be set that require knowledge of elementary topics, such as basic geometry, mensuration (areas of triangles, volume of sphere, etc), sine and cosine formulae for triangles, rational and irrational numbers.

Formula booklets and calculators

Candidates should use the STEP formula booklet which will be posted out with the question papers and can be downloaded from the website (http://www.stepmathematics.org.uk).

Calculators are not permitted (or required).

MATHEMATICS I (9465) and MATHEMATICS II (9470)

Section A: Pure Mathematics

This section comprises the Advanced GCE common core (typically, modules C1 - C4 of an Advanced GCE specification) broadly interpreted, together with a few additional items *enclosed in asterisks*.

Specification

General

Mathematical vocabulary and notation

Methods of proof

Algebra

Indices and surds
Quadratics
The expansion for $(a+b)^{n}$

Algebraic operations on polynomials and rational functions.

Partial fractions

Sequences and series

Notes

including: equivalent to; necessary and sufficient; if and only if; $\Rightarrow ; \Leftrightarrow ; \equiv$.
including proof by contradiction and disproof by counterexample;
including, in simple cases, proof by induction.
including rationalising denominators.
including proving positivity by completing a square.
including knowledge of the general term;
notation: $\binom{n}{r}=\frac{n!}{r!(n-r)!}$.
including factorisation, the factor theorem, the remainder theorem;
including understanding that, for example, if

$$
x^{3}+b x^{2}+c x+d \equiv(x-\alpha)(x-\beta)(x-\gamma),
$$

then $d=-\alpha \beta \gamma$.
including denominators with a repeated or quadratic factor.
including use of, for example, $a_{n+1}=\mathrm{f}\left(a_{n}\right)$ or $a_{n+1}=$ $\mathrm{f}\left(a_{n}, a_{n-1}\right)$;
including understanding of the terms convergent, divergent and periodic in simple cases;
including use of $\sum_{k=1}^{n} k$ to obtain related sums.
including understanding of the condition $|x|<1$.
including sums to infinity and conditions for convergence, where appropriate.
including solution of, eg, $\frac{1}{a-x}>\frac{x}{x-b}$;
including simple inequalities involving the modulus function;
including the solution of simultaneous inequalities by graphical means.

Functions

Domain, range, composition, inverse

Increasing and decreasing functions

Exponentials and logarithms

The effect of simple transformations
The modulus function.
Location of roots of $\mathrm{f}(x)=0$ by considering changes of sign of $\mathrm{f}(x)$.
Approximate solution of equations using simple iterative methods.

Curve sketching

General curve sketching

Trigonometry

Radian measure, arc length of a circle, area of a segment.
Trigonometric functions

Double angle formulae
Formulae for $\sin (A \pm B)$ and $\cos (A \pm B)$

Inverse trigonometric functions

Coordinate geometry

Straight lines in two-dimensions

Circles

Cartesian and parametric equations of curves and conversion between the two forms.
including use of functional notation such as $y=\mathrm{f}(a x+b), x=\mathrm{f}^{-1}(y)$ and $z=\mathrm{f}(\mathrm{g}(x))$.
both the common usages of the term 'increasing' (i.e. x $y \Rightarrow \mathrm{f}(x)>\mathrm{f}(y)$ or $x>y \Rightarrow \mathrm{f}(x) \geqslant \mathrm{f}(y))$ will be acceptable.
including $x=a^{y} \Leftrightarrow y=\log _{a} x, x=\mathrm{e}^{y} \Leftrightarrow y=\ln x$; $*$ including the exponential series

$$
\mathrm{e}^{x}=1+x+\cdots+x^{n} / n!+\cdots
$$

such as $y=a \mathrm{f}(b x+c)+d$.
including use of symmetry, tranformations, behaviour as $x \rightarrow \pm \infty$, points or regions where the function is undefined, turning points, asymptotes parallel to the axes.
including knowledge of standard values, such as $\tan (\pi / 4)$, $\sin 30^{\circ}$;
including identities such as $\sec ^{2} \phi-\tan ^{2} \phi=1$;
including application to geometric problems in two and three dimensions.
including their use in calculating, eg, $\tan (\pi / 8)$.
including their use in solving equations such as

$$
a \cos \theta+b \sin \theta=c
$$

definitions including domains and ranges;
notation: $\arctan \theta$, etc
including the equation of a line through two given points, or through a given point and parallel to a given line or through a given point and perpendicular to a given line; including finding a point which divides a segment in a given ratio.
using the general form $(x-a)^{2}+(y-b)^{2}=R^{2}$; including points of intersection of circles and lines.

Calculus

Interpretation of a derivative as a limit and as a rate of change
Differentiation of standard functions

Differentiation of composite functions, products and quotients and functions defined implicitly.

Higher derivatives

Applications of differentiation to gradients, tangents and normals, stationary points, increasing and decreasing functions

Integration as reverse of differentiation

Integral as area under a curve

Volume within a surface of revolution
Knowledge and use of standard integrals

Definite integrals

Integration by parts and by substitution

Formulation and solution of differential equations

Vectors

Vectors in two and three dimensions
Magnitude of a vector
Vector addition and multiplication by scalars
Position vectors
The distance between two points.
Vector equations of lines

The scalar product
including knowledge of both notations $\mathrm{f}^{\prime}(x)$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}$
including algebraic expressions, trigonometric (but not in verse trigonometric) functions, exponential and \log functions.
including knowledge of both notations $\mathrm{f}^{\prime \prime}(x)$ and $\frac{d^{2} y}{\mathrm{~d} x^{2}}$; including knowledge of the notation $\frac{d^{n} y}{\mathrm{~d} x^{n}}$.
including finding maxima and minima which are not stationary points;
including classification of stationary points using the second derivative.
including area between two graphs;
including approximation of integral by the rectangle and trapezium rules.
including the forms $\int \mathrm{f}^{\prime}(\mathrm{g}(x)) \mathrm{g}^{\prime}(x) \mathrm{d} x \quad$ and $\int \mathrm{f}^{\prime}(x) / \mathrm{f}(x) \mathrm{d} x$;
including transformation of an integrand into standard (or some given) form;
including use of partial fractions;
not including knowledge of integrals involving inverse trigonometric functions.
including calculation, without justification, of simple improper integrals such as $\int_{0}^{\infty} \mathrm{e}^{-x} \mathrm{~d} x$ and $\int_{0}^{1} x^{-\frac{1}{2}} \mathrm{~d} x$ (if required, information such as the behaviour of $x \mathrm{e}^{-x}$ as $x \rightarrow$ ∞ or of $x \ln x$ as $x \rightarrow 0$ will be given).
including understanding their relationship with differentiation of product and of a composite function; including application to $\int \ln x \mathrm{~d} x$.
formulation of first order equations;
solution in the case of a separable equation or by some other method given in the question.
including use of column vector and \mathbf{i}, \mathbf{j}, \mathbf{k} notation. including the idea of a unit vector. including geometrical interpretations. including application to geometrical problems.
including the finding the intersection of two lines; understanding the notion of skew lines (knowledge of shortest distance between skew lines is not required). including its use for calculating the angle between two vectors.

Section B: Mechanics

This section is roughly equivalent to two GCE modules M1 and M2; candidates who have only studied one ule of mechanics are likely to lack both the knowledge and the experience of mechanics required to attempt questions. Questions may involve any of the material in the Pure Mathematics syllabus.

Force as a vector
Centre of mass
Equilibrium of a rigid body or several rigid bodies in contact

Kinematics of a particle in a plane

Energy (kinetic and potential), work and power

Collisions of particles

Newton's first and second laws of motion

Motion of a projectile under gravity
including resultant of several forces acting at a point and the triangle or polygon of forces;
including equilibrium of a particle;
forces include weight, reaction, tension and friction.
including obtaining the centre of mass of a system of particles, of a simple uniform rigid body (possible composite) and, in simple cases, of non-uniform body by integration.
including use of moment of a force;
for example, a ladder leaning against a wall or on a movable cylinder;
including investigation of whether equilibrium is broken by sliding, toppling or rolling;
including use of Newton's third law; excluding questions involving frameworks.
including the case when velocity or acceleration depends on time (but excluding use of acceleration $=v \frac{\mathrm{~d} v}{\mathrm{~d} x}$);
questions may involve the distance between two moving particles, but detailed knowledge of relative velocity is not required.
including application of the principle of conservation of energy.
including conservation of momentum, conservation of energy (when appropriate);
coefficient of restitution, Newton's experimental law;
including simple cases of oblique impact (on a plane, for example);
including knowledge of the terms perfectly elastic ($e=1$) and inelastic ($e=0$);
questions involving successive impacts may be set.
including motion of a particle in two and three dimensions and motion of connected particles, such as trains, or particles connected by means of pulleys.
including manipulation of the equation

$$
y=x \tan \alpha-\frac{g x^{2}}{2 V^{2} \cos ^{2} \alpha}
$$

viewed, possibly, as a quadratic in $\tan \alpha$; not including projectiles on inclined planes.

Section C: Probability and Statistics

The emphasis, in comparison with Advanced GCE and other comparable examinations, is towards probabilit formal proofs, and away from data analysis and use of standard statistical tests. Questions may involve use of of the material in the Pure Mathematics syllabus.

Probability

Permutations, combinations and arrangements
Exclusive and complementary events

Conditional probability

Distributions

Discrete and continuous probability distribution functions and cumulative distribution functions.

Binomial distribution

Poisson distribution

Normal distribution

including sampling with and without replacement.
including understanding of $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-$ $\mathrm{P}(A \cap B)$, though not necessarily in this form.
informal applications, such as tree diagrams.
including calculation of mean, variance, median, mode and expectations by explicit summation or integration for a given (possibly unfamiliar) distribution (eg exponential or geometric or something similarly straightforward); notation: $\mathrm{f}(x)=\mathrm{F}^{\prime}(x)$.
including explicit calculation of mean.
including explicit calculation of mean;
including use as approximation to binomial distribution where appropriate.
including conversion to the standard normal distribution by translation and scaling;
including use as approximation to the binomial or Poisson distributions where appropriate;
notation: $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$.
including knowledge of the terminology null hypothesis and alternative hypothesis, one and two tailed tests.

MATHEMATICS III (9475)

In each section knowledge of the corresponding parts of the syllabus for Mathematics I and II is assumed, anc form the basis of some questions.

Section A: Pure Mathematics

Algebra

Polynomial equations

Induction

Trigonometry

Formula for $\sin A \sin B$ (etc) and $\sin A+\sin B$ (etc)

Coordinate geometry

Ellipse, parabola, hyperbola and rectangular hyperbola

Polar coordinates
including use of method of differences, recognition of Maclaurin's series (including binomial series) and partial fractions;
including investigation of convergence, by consideration of the sum to n terms.
including complex solutions (and the fact that they occur in conjugate pairs if the cooefficients are real);
including the relationship between symmetric functions of the roots and the coefficients;
including formation of a new equation whose roots are related to the roots of the old equation.
including application complicated situations such as divisibility problems.
including standard Cartesian forms and parametric forms; including geometrical understanding, but not detailed knowledge of, the terms focus, directrix, eccentricity.
including relation with Cartesian coordinates;
including ability to sketch simple graphs;
including integral formula for area.
including Cartesian and polar forms.
including geometrical representation of sums and products including identification of loci and regions (eg $|z-a|=$ $k|z-b|$).
including the relationship between trigonometrical and exponential functions;
including application to summation of trigonometric series. including application to finding nth roots.

Hyperbolic functions

Definitions and properties of the six hyperbolic functions
Formulae corresponding to trigonometric formulae Inverse functions

Calculus

Integrals resulting in inverse trig. or hyperbolic functions
Maclaurin's series

Arc length of a curve expressed in Cartesian coordinates
First order linear differential equations

Second order linear differential equations with constant coefficients
including integrals and derivatives of cosh, sinh, tand and coth.
such as $\cosh ^{2} x-\sinh ^{2} x=1$ and $\sinh (x+y)=\cdots$.
including ability to derive logarithmic forms and graphs; including derivatives.
including integrands such as $\left(x^{2}-a x\right)^{-\frac{1}{2}}$.
including knowledge of expansions for $\sin x, \cos x, \cosh x$, $\sinh x$ and $\ln (1+x)$.
including curves described parametrically.
including the general form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\mathrm{P}(x) y=\mathrm{Q}(x)
$$

including the inhomogeneous case

$$
a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+b \frac{\mathrm{~d} y}{\mathrm{~d} x}+c y=\mathrm{f}(x)
$$

where $\mathrm{f}(x)$ is an exponential function, a \sin / \cos function or a polynomial (but excluding resonant cases);
including equations that can be transformed into the above form;
including initial or boundary conditions.
including use of $v \frac{\mathrm{~d} v}{\mathrm{~d} x}$ for acceleration.
including Hooke's law and the potential energy;
notation: $T=k x=\lambda x / l$, where k is stiffness, λ is modulus of elasticity.
including motion with non-uniform speed.
including obtaining from a given model an equation of the form $\ddot{x}+\omega^{2} x=a$, where a is a constant, and quoting the solution.
including calculations involving integration (such as a nonuniform rod, or a lamina);
including parallel and perpendicular axis theorems.
including understanding of angular momentum and rotational kinetic energy and their conservation;
including the understanding of couple and the work done by a couple;
including calculation of forces on the axis.

Section C: Probability and Statistics

Algebra of expectations

Further theory of distribution functions

Generating functions

Discrete bivariate distributions

Sampling
for example, $\mathrm{E}(a X+b Y+c)=a \mathrm{E}(X)+b \mathrm{E}(Y)$
$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$,
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.
including, for example, use of the cumulative distribution function to calculate the distribution of a related random variable (eg X^{2}).
including the use of generating functions to obtain the distribution of the sum of independent random variables.
including understanding of the idea of independence; including marginal and conditional distributions; including use of $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+$ $b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)$.
including sample mean and variance; including use of the central limit theorem.

