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Section A: Pure Mathematics

1 In this question, do not consider the special cases in which the denominators of any of your
expressions are zero.

Express tan(θ1 + θ2 + θ3 + θ4) in terms of ti, where t1 = tan θ1 , etc.

Given that tan θ1, tan θ2, tan θ3 and tan θ4 are the four roots of the equation

at4 + bt3 + ct2 + dt + e = 0

(where a 6= 0), find an expression in terms of a, b, c, d and e for tan(θ1 + θ2 + θ3 + θ4).

The four real numbers θ1, θ2, θ3 and θ4 lie in the range 0 6 θi < 2π and satisfy the equation

p cos 2θ + cos(θ − α) + p = 0 ,

where p and α are independent of θ. Show that θ1 + θ2 + θ3 + θ4 = nπ for some integer n.

2 (i) Show that 1.3.5.7. . . . .(2n− 1) =
(2n)!
2nn!

and that, for |x| < 1
4 ,

1√
1− 4x

= 1 +
∞∑

n=1

(2n)!
(n!)2

xn .

(ii) By differentiating the above result, deduce that

∞∑
n=1

(2n)!
n! (n− 1)!

(
6
25

)n

= 60 .

(iii) Show that
∞∑

n=1

2n+1(2n)!
32n(n + 1)!n!

= 1 .
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3 A sequence of numbers, F1, F2, . . ., is defined by F1 = 1, F2 = 1, and

Fn = Fn−1 + Fn−2 for n > 3.

(i) Write down the values of F3, F4, . . . , F8.

(ii) Prove that F2k+3F2k+1 − F 2
2k+2 = −F2k+2F2k + F 2

2k+1 .

(iii) Prove by induction or otherwise that F2n+1F2n−1 − F 2
2n = 1 and deduce that F 2

2n + 1
is divisible by F2n+1 .

(iv) Prove that F 2
2n−1 + 1 is divisible by F2n+1 .

4 A curve is given parametrically by

x = a
(
cos t + ln tan 1

2 t
)
,

y = a sin t ,

where 0 < t < 1
2π and a is a positive constant. Show that

dy

dx
= tan t and sketch the curve.

Let P be the point with parameter t and let Q be the point where the tangent to the curve
at P meets the x-axis. Show that PQ = a.

The radius of curvature, ρ, at P is defined by

ρ =

(
ẋ2 + ẏ2

) 3
2

|ẋÿ − ẏẍ|
,

where the dots denote differentiation with respect to t. Show that ρ = a cot t.

The point C lies on the normal to the curve at P , a distance ρ from P and above the curve.
Show that CQ is parallel to the y-axis.

5 Let y = ln(x2−1) , where x > 1, and let r and θ be functions of x determined by r =
√

x2 − 1
and coth θ = x. Show that

dy

dx
=

2 cosh θ

r
and

d2y

dx2
= −2 cosh 2θ

r2
,

and find an expression in terms of r and θ for
d3y

dx3
.

Find, with proof, a similar formula for
dny

dxn
in terms of r and θ.
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6 The distinct points P , Q, R and S in the Argand diagram lie on a circle of radius a centred at
the origin and are represented by the complex numbers p, q, r and s, respectively. Show that

pq = −a2 p− q

p∗ − q∗
.

Deduce that, if the chords PQ and RS are perpendicular, then pq + rs = 0.

The distinct points A1, A2, . . ., An (where n > 3) lie on a circle. The points B1, B2, . . ., Bn lie
on the same circle and are chosen so that the chords B1B2, B2B3, . . ., BnB1 are perpendicular,
respectively, to the chords A1A2, A2A3, . . ., AnA1. Show that, for n = 3, there are only two
choices of B1 for which this is possible. What is the corresponding result for n = 4? State the
corresponding results for values of n greater than 4.

7 The functions s(x) (0 6 x < 1) and t(x) (x > 0), and the real number p, are defined by

s(x) =
∫ x

0

1√
1− u2

du , t(x) =
∫ x

0

1
1 + u2

du , p = 2
∫ ∞

0

1
1 + u2

du .

For this question, do not evaluate any of the above integrals explicitly in terms of inverse
trigonometric functions or the number π.

(i) Use the substitution u = v−1 to show that t(x) =
∫ ∞

1/x

1
1 + v2

dv . Hence evaluate

t(1/x) + t(x) in terms of p and deduce that 2t(1) = 1
2p .

(ii) Let y =
u√

1 + u2
. Express u in terms of y, and show that

du

dy
=

1√
(1− y2)3

.

By making a substitution in the integral for t(x), show that

t(x) = s
(

x√
1 + x2

)
.

Deduce that s
(

1√
2

)
= 1

4p .

(iii) Let z =
u + 1√

3

1− 1√
3
u

. Show that t( 1√
3
) =

∫ √
3

1√
3

1
1 + z2

dz , and hence that 3t( 1√
3
) = 1

2p .
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8 (i) Find functions a(x) and b(x) such that u = x and u = e−x both satisfy the equation

d2u

dx2
+ a(x)

du

dx
+ b(x)u = 0 .

For these functions a(x) and b(x), write down the general solution of the equation.

Show that the substitution y =
1
3u

du

dx
transforms the equation

dy

dx
+ 3y2 +

x

1 + x
y =

1
3(1 + x)

(∗)

into
d2u

dx2
+

x

1 + x

du

dx
− 1

1 + x
u = 0

and hence show that the solution of equation (∗) that satisfies y = 0 at x = 0 is given

by y =
1− e−x

3(x + e−x)
.

(ii) Find the solution of the equation

dy

dx
+ y2 +

x

1− x
y =

1
1− x

that satisfies y = 2 at x = 0.
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Section B: Mechanics

9 Two small beads, A and B, each of mass m, are threaded on a smooth horizontal circular
hoop of radius a and centre O. The angle θ is the acute angle determined by 2θ = ∠AOB.

The beads are connected by a light straight spring. The energy stored in the spring is

mk2a2(θ − α)2,

where k and α are constants satisfying k > 0 and π
4 < α < π

2 .

The spring is held in compression with θ = β and then released. Find the period of oscillations
in the two cases that arise according to the value of β and state the value of β for which
oscillations do not occur.

10 A particle is projected from a point on a plane that is inclined at an angle φ to the horizontal.
The position of the particle at time t after it is projected is (x, y), where (0, 0) is the point of
projection, x measures distance up the line of greatest slope and y measures perpendicular dis-
tance from the plane. Initially, the velocity of the particle is given by (ẋ, ẏ) = (V cos θ, V sin θ),
where V > 0 and φ + θ < π/2 . Write down expressions for x and y.

The particle bounces on the plane and returns along the same path to the point of projection.
Show that

2 tanφ tan θ = 1

and that

R =
V 2 cos2 θ

2g sinφ
,

where R is the range along the plane.

Show further that
2V 2

gR
= 3 sin φ + cosec φ

and deduce that the largest possible value of R is V 2/(
√

3 g) .
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11 (i) A wheel consists of a thin light circular rim attached by light spokes of length a to a small
hub of mass m. The wheel rolls without slipping on a rough horizontal table directly
towards a straight edge of the table. The plane of the wheel is vertical throughout the
motion. The speed of the wheel is u, where u2 < ag .

Show that, after the wheel reaches the edge of the table and while it is still in contact
with the table, the frictional force on the wheel is zero. Show also that the hub will fall
a vertical distance (ag − u2)/(3g) before the rim loses contact with the table.

(ii) Two particles, each of mass m/2, are attached to a light circular hoop of radius a, at the
ends of a diameter. The hoop rolls without slipping on a rough horizontal table directly
towards a straight edge of the table. The plane of the hoop is vertical throughout the
motion. When the centre of the hoop is vertically above the edge of the table it has
speed u, where u2 < ag , and one particle is vertically above the other.

Show that, after the hoop reaches the edge of the table and while it is still in contact
with the table, the frictional force on the hoop is non-zero and deduce that the hoop
will slip before it loses contact with the table.
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Section C: Probability and Statistics

12 I choose a number from the integers 1, 2, . . ., (2n − 1) and the outcome is the random
variable N . Calculate E(N) and E(N2).

I then repeat a certain experiment N times, the outcome of the ith experiment being the
random variable Xi (1 6 i 6 N). For each i, the random variable Xi has mean µ and
variance σ2, and Xi is independent of Xj for i 6= j and also independent of N . The random

variable Y is defined by Y =
N∑

i=1
Xi. Show that E(Y ) = nµ and that Cov (Y, N) = 1

3n(n−1)µ.

Find Var (Y ) in terms of n, σ2 and µ.

13 A frog jumps towards a large pond. Each jump takes the frog either 1 m or 2 m nearer to
the pond. The probability of a 1 m jump is p and the probability of a 2 m jump is q, where
p + q = 1, the occurence of long and short jumps being independent.

(i) Let pn(j) be the probability that the frog, starting at a point (n − 1
2) m away from

the edge of the pond, lands in the pond for the first time on its jth jump. Show that
p2(2) = p.

(ii) Let un be the expected number of jumps, starting at a point (n − 1
2) m away from

the edge of the pond, required to land in the pond for the first time. Write down the
value of u1. By finding first the relevant values of pn(m), calculate u2 and show that
u3 = 3− 2q + q2.

(iii) Given that un can be expressed in the form un = A(−q)n−1 + B + Cn, where A, B and
C are constants (independent of n), show that C = (1+ q)−1 and find A and B in terms
of q. Hence show that, for large n, un ≈

n

p + 2q
and explain carefully why this result is

to be expected.
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14 (i) My favourite dartboard is a disc of unit radius and centre O. I never miss the board,
and the probability of my hitting any given area of the dartboard is proportional to the
area. Each throw is independent of any other throw. I throw a dart n times (where
n > 1). Find the expected area of the smallest circle, with centre O, that encloses all
the n holes made by my dart.

Find also the expected area of the smallest circle, with centre O, that encloses all the
(n− 1) holes nearest to O.

(ii) My other dartboard is a square of side 2 units, with centre Q. I never miss the board,
and the probability of my hitting any given area of the dartboard is proportional to the
area. Each throw is independent of any other throw. I throw a dart n times (where
n > 1). Find the expected area of the smallest square, with centre Q, that encloses all
the n holes made by my dart.

(iii) Determine, without detailed calculations, whether the expected area of the smallest
circle, with centre Q, on my square dartboard that encloses all the n holes made by my
darts is larger or smaller than that for my circular dartboard.


