2010 Technological Studies

Standard Grade - General

Finalised Marking Instructions

© Scottish Qualifications Authority 2010
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the External Print Team, Centre Services, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's External Print Team, Centre Services, at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

1. Microcontrollers consist of several sub-systems.
(a) Complete the table by matching the correct sub-system from the list below with its function given in the table.

ALU Clock RAM Bus ROM

Microcontroller sub-systems	Function
Clock	Synchronises the system and controls the speed of operation.
ALU	The "brain" of the microcontroller that carries out mathematical functions.
Bus	Used to move information between microcontroller sub-systems.
RAM	Temporary memory used during the running of the program/task.
ROM	Permanent memory where a program can be stored.

(b) State the full name of the following microcontroller sub-systems.
(i) $\mathbf{R O M}$
\qquad
(ii) RAM

Full name Random access memory
2. A petrol driven mini-moto is shown below.

(a) Complete the system diagram below for the mini-moto by adding the main input energy and the main output energy.

(b) The main parts of a mini-moto drive system are shown in the diagram below.

(i) A separates the system from the outside world.

State the name of this part of the diagram.

(System) Boundary

(ii) The whole system can be broken down into several parts labelled above as B. State the name given to these parts.

Sub-systems
3. An automatic sliding roof for a sports stadium is operated by a microcontroller.

Part of the control program includes a sub-procedure 'close' which will run when frost is detected.

The sequence is as follows:

- the floodlights switch on;
- after a 5 second delay the roof motor switches on;
- when the stadium roof is fully closed a limit switch is activated which stops the motor;
- the sequence ends and returns to the main program.

INPUT/OUTPUT CONNECTIONS

Input Connection	Pin	Output Connection
	7	Roof motor
	6	
	5	Floodlights
	4	
	3	
Limit Switch	2	
	1	
	0	

3. (continued)
(a) Complete, with reference to the sequence of operations and Data Booklet, the flowchart for sub-procedures 'close'.

Page 5
3. (continued)

The flowchart is used to develop a PBASIC program.
(b) With reference to the Data Booklet state the PBASIC command:
(i) for pin 4, and 6 to be set up as an output and the remaining 6 pins set up as inputs;

let 1 DIRS $=\% 01010000$ on 80	1 RNA for Binary number
l 1 RNA for PBASIC	

(ii) to produce a 5 second delay.
pause 5000
(c) State two advantages of using a microcontroller instead of a hard wired electronic system.

1 More flexible/features/accurate/smaller with less parts

2
Re-programmable/easier assembly/cheaper because less parts
The device shown in the sketch below is part of the stadium roof mechanism.

(d) State the name of parts A and B
(A) Pawl
(B) Ratchet
4. A bicycle light is modelled using electronic boards.

The light can be activated manually by either switch A (flashing mode) or by switch B (constant mode). It will also switch on automatically when darkness is sensed.
(a) Complete the block diagram by choosing the correct devices from the list below.

Pulse generator	AND gate	OR gate	Magnetic Switch
Latch	Temperature sensor	Transducer driver	NOT gate

(b) (i) Sketch the logic symbol for an AND gate.

1 KU for shape
(ii) Complete the truth table for an AND gate.

Input A	Input B	Z
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
0	1	0
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$ KU row
1	$\mathbf{1}$ KU row	

1 KU row

1 KU row
1 KU row
(c) State the name of the electronic component shown opposite.

LDR (Light Dependant Resistor)

The latch will keep the output on.

Marks	
KU	RNA
	4
	3
	2
	1
	0

5. Pneumatic circuits can be used to perform logical operations.
(a) Draw the symbols for exhaust and mains air on Valve A below.

1 KU for correct symbol (exhaust) and 1 KU for correct symbol (mains air)

Marks	
KU	RNA
2	2
1	1
0	0

(b) Complete the piping of the pneumatic circuits below to give:
(i) AND control;

(ii) OR control.

(c) State the full name of the following pneumatic components.
(i) Valve (D)
3/2, spring return, push button
(ii) Valve E
Shuttle
6. A skateboarder is shown below.

The diagram below shows the forces and distances on the skateboard.

(a) State the name given to the type of diagram shown above.

Free body (diagram)

(b) (i) Calculate, by taking moments about R_{2}, the size of the reaction force R_{1}.

$$
\begin{aligned}
\Sigma C W M & =\Sigma A C W M \\
\left(\mathrm{R}_{1} \times 500\right) & =(500 \times 350) \\
\mathrm{R}_{1} & =\frac{500 \times 350}{500} \\
\mathrm{R}_{1} & =350 \mathrm{~N}
\end{aligned}
$$

1 RNA for correct answer from given working
(ii) Calculate the reaction force R_{2}.

$$
\begin{aligned}
\Sigma \text { upward } & =\Sigma \text { downward } \\
350+\mathrm{R}_{2} & =500 \\
\mathrm{R}_{2} & =500-350 \\
& \\
\mathrm{R}_{2} & =150 \mathrm{~N}
\end{aligned}
$$

1 RNA for substituion - FTE

1 RNA for correct answer from
given working
Bearings are used in the wheels of a skateboard to reduce friction.
(c) State one other method which can be used to reduce friction.

Lubrication
7. A hire shop in a popular Spanish resort rents out electric scooters.

The scooters use rechargeable batteries.
(a) Part of a resistor arrangement for the battery charger is shown.

(i) Calculate the resistance of the parallel branch shown above.

$$
\begin{aligned}
\mathrm{R}_{\mathrm{T}} & =\frac{\mathrm{R}_{1} \times \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\
& =\frac{6 \times 2}{6+2} \\
& =\frac{12}{8}=1.5 \Omega
\end{aligned}
$$

1 RNA for substitution
(ii) Calculate the total circuit resistance for the arrangement shown above.

$$
\begin{array}{rlr}
\mathrm{R}_{\mathrm{T}} & = & \mathrm{R}_{1}+\mathrm{R}_{2} \\
& = & 2 \cdot 2+1 \cdot 5 \\
& =3 \cdot 7 \Omega
\end{array}
$$

FTE
1 RNA for substitution

Other electronic components are used in the battery charger.
(b) State the name of the electronic components shown below.

1 LED

2 Diode

3 Transistor
7. (continued)

The current flowing through the $2 \cdot 2 \Omega$ resistor is 0.6 amps .
(c) (i) Calculate the voltage across the $2 \cdot 2 \Omega$ resistor.

$$
\begin{aligned}
\mathrm{V} & =\mathrm{IR} \\
\mathrm{~V} & =0.6 \times 2.2 \\
& =1.32 \mathrm{~V}
\end{aligned}
$$

1 RNA for substitution
1 RNA for correct answer from given working

Marks	
KU	RNA

(ii) Calculate the power used by the $2 \cdot 2 \Omega$ resistor.

$$
P=V I
$$

FTE from (c) (i)
1 RNA for substitution
1 RNA for correct answer from given working
(iii) Draw the symbol for an ammeter.
(d) (i) Select (\checkmark) the correct position of a voltmeter to measure the voltage across the resistor R .

(ii) Draw the symbol for a voltmeter.

V
8. A snowboarder of mass 65 kg is standing at point A on a half pipe.

(a) Calculate the potential energy of the snowboarder at point A .
$\mathrm{PE}=\mathrm{mgh}$

$$
\begin{array}{ll}
= & 65 \times 9.81 \times 6 \\
= & 3825.9 \mathrm{~J}
\end{array}
$$

1 RNA for substitution
1 RNA for correct answer from given working
The snowboarder is travelling at $10 \mathrm{~m} / \mathrm{s}$ when he reaches point B.
(b) Calculate the kinetic energy of the snowboarder at point B.

$$
\begin{aligned}
\mathrm{KE} & =1 / 2 \mathrm{mv}^{2} \\
& =0.5 \times 65 \times 10^{2} \\
& =3250 \mathrm{~J}
\end{aligned}
$$

1 RNA for substitution
1 RNA for correct answer from given working
(c) Complete the table below to indicate (\checkmark) whether each listed energy source is renewable or non-renewable.

Energy source	Energy type	
	Renewable	Non-renewable
Wind	\checkmark	
Coal		\checkmark
Gas		\checkmark
Bio-mass	\checkmark	
Wave	\checkmark	

1 KU each

