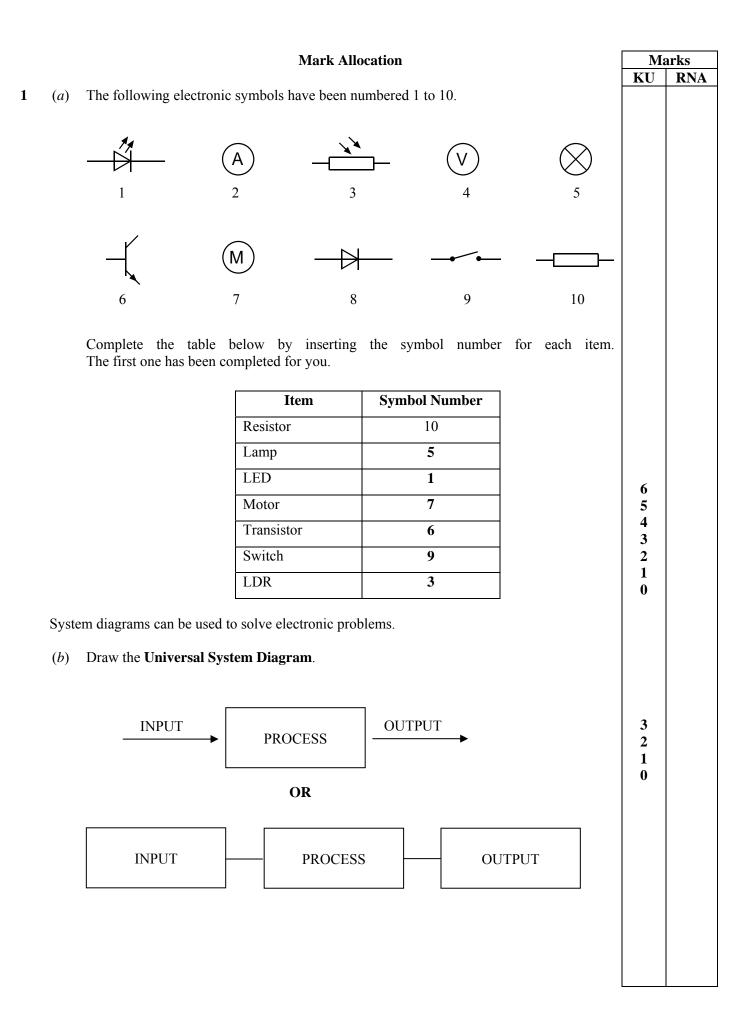
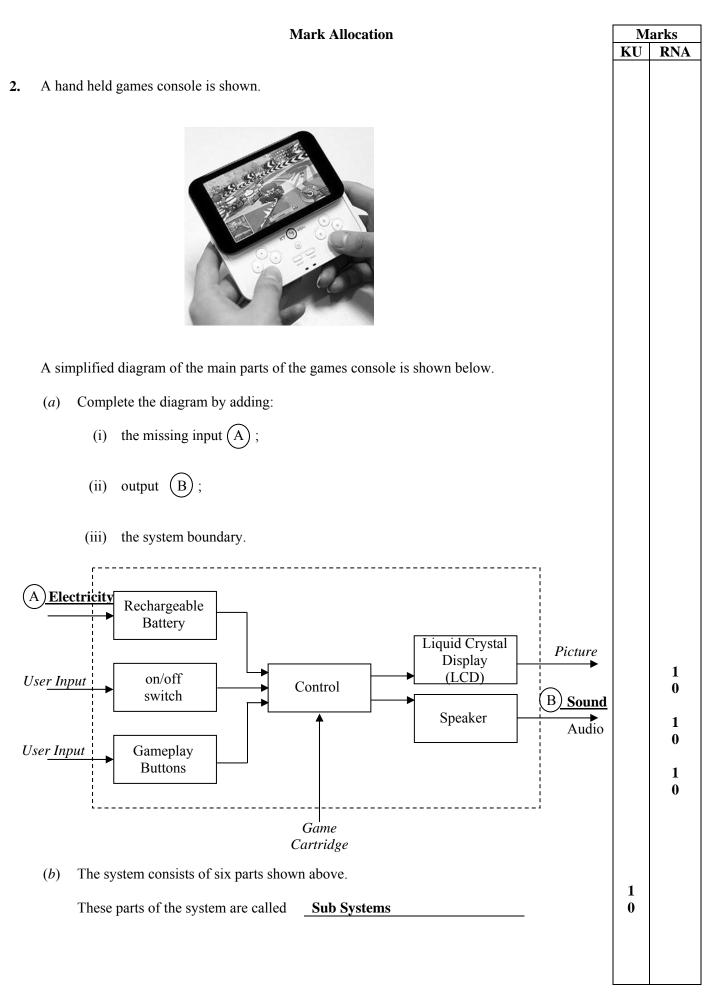
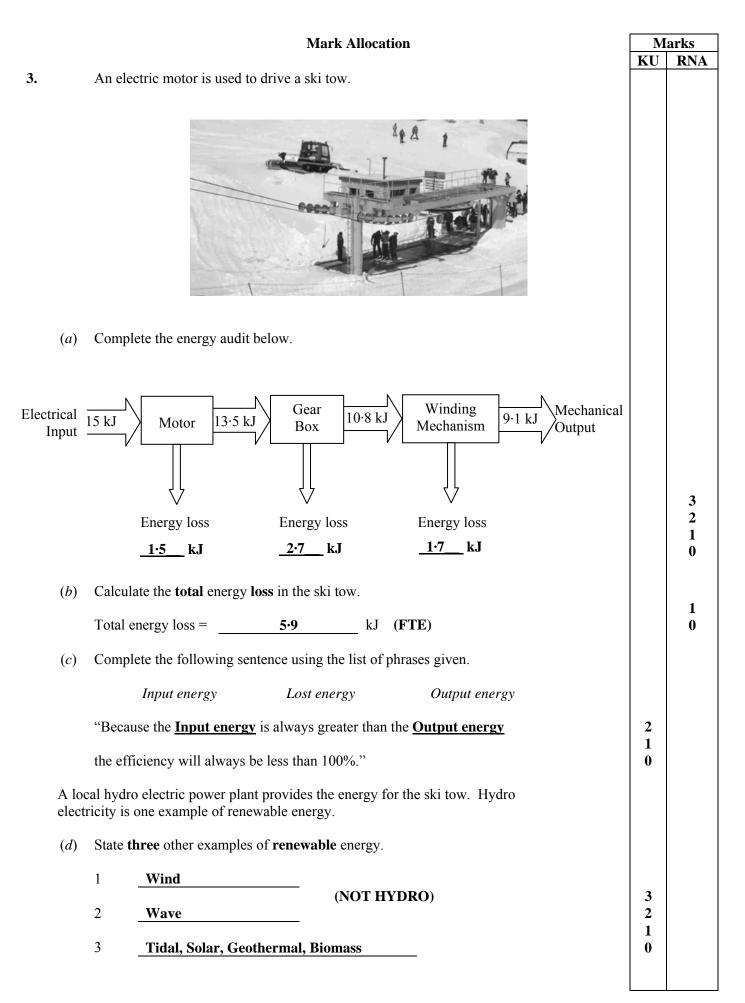


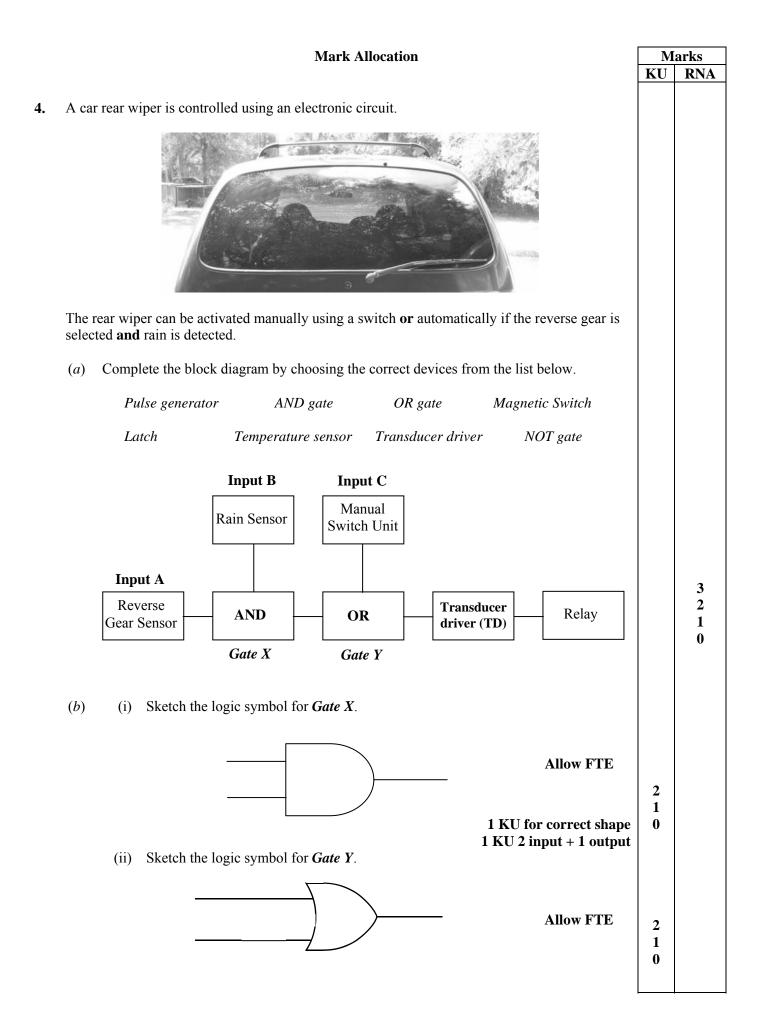
2009 Technological Studies

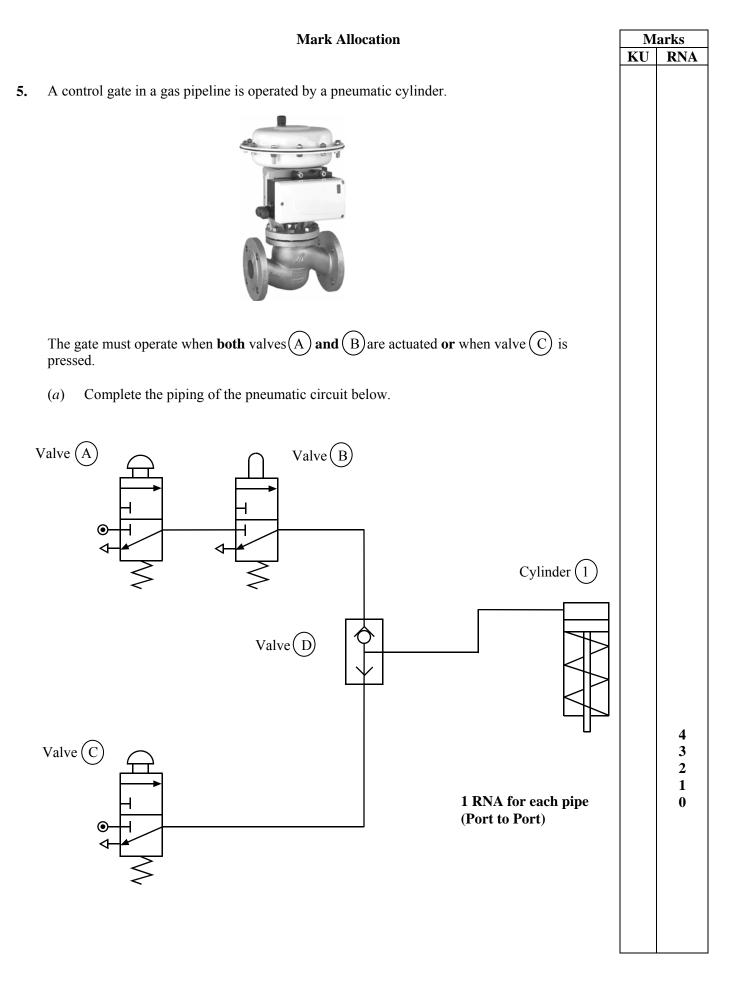
Standard Grade – General

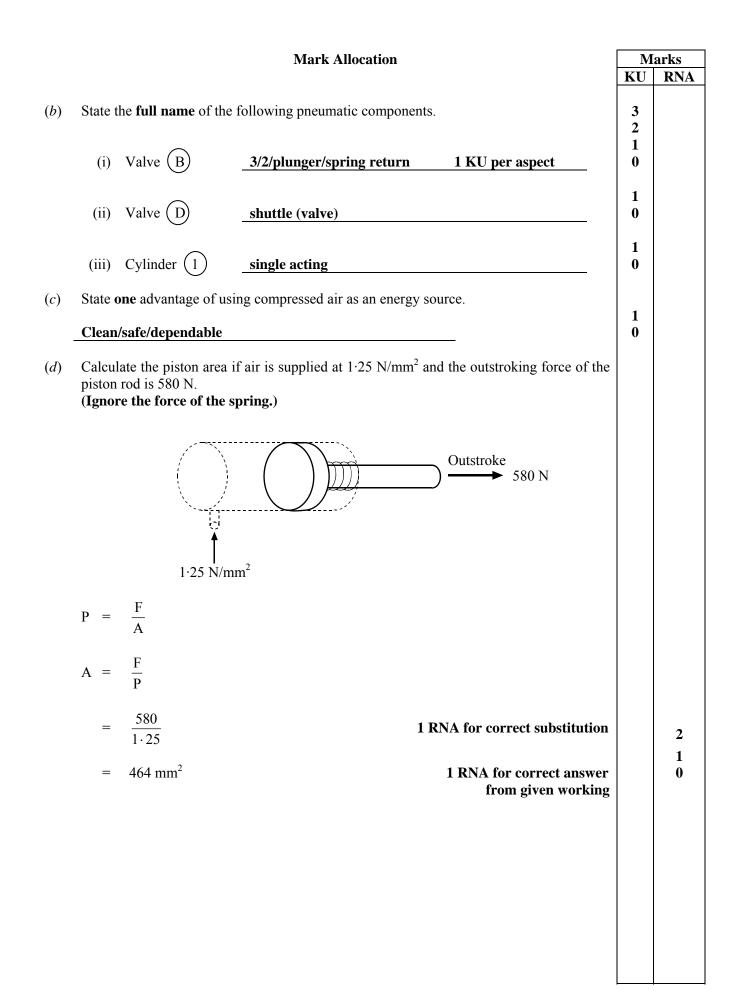

Finalised Marking Instructions

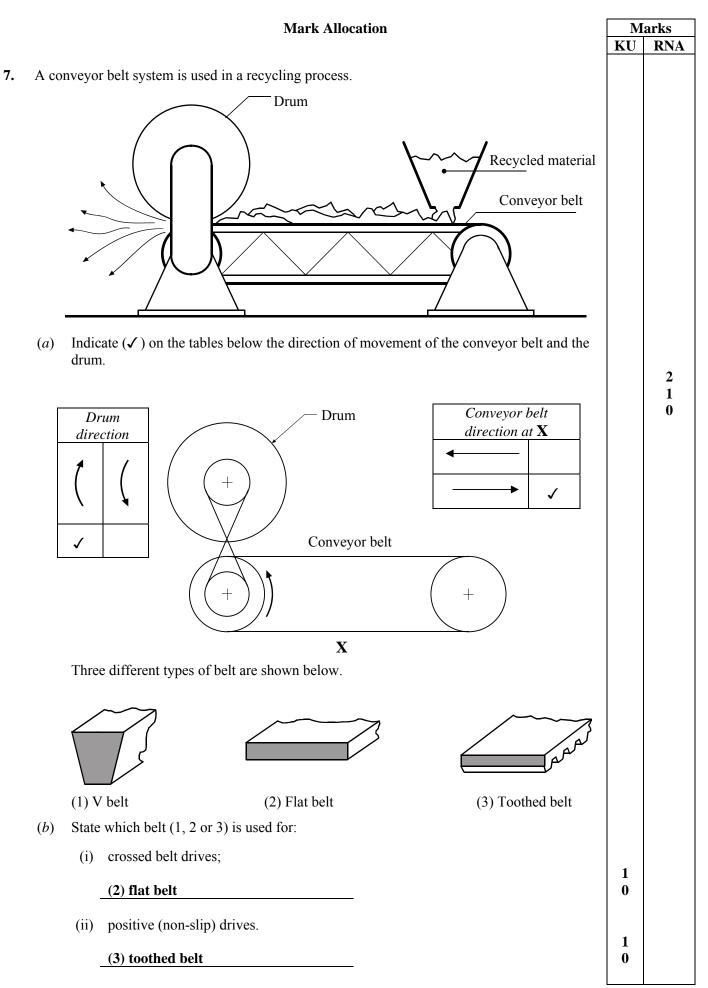

© Scottish Qualifications Authority 2009


The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

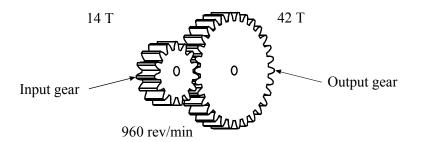

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.


These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.





Mark Allocation Marks KU RNA A microwave oven is fitted with a safety circuit that will automatically switch off if the outside 6. surface gets too warm. The incomplete safety circuit is shown below. 5 V O 0 Thermistor 230 V - t O Diode 2 RNA symbols 1 KU orientation diode X 0 V O 2 1 1 Draw the symbols for the two components named above to complete the safety circuit. 0 0 *(a)* State the name of component **X**. *(b)* 1 Variable resistor 0 Determine, with reference to the Data Booklet, the temperature range of a type 1 2 *(c)* thermistor. 1 0 **-75°C** to 125°C State the saturation voltage of a transistor. (d)1 V_{be} **0.7** 0


			Mark Allocation	Μ	arks			
				KU	RNA			
(<i>e</i>)	(i)	Calculate the current flowing through the relay if the coil has a resistance of 400 Ω and a voltage drop of 4 V.						
		V =	IR					
		I =	$\frac{V}{R}$					
		=	41 RNA for substitution		2 1			
		=	0.01 A 1 RNA for correct answer from working		1 0			
	(ii)	Calculate the power used by the relay coil.						
A II.a		P =	I^2R OR $P = \frac{V^2}{R}$ OR $P = VI$					
Allo FTH		=	$I^{2}R OR P = \frac{V^{2}}{R} OR P = VI$ $0.01^{2} \times 400 - 1 RNA = \frac{4^{2}}{400} = 4 \times 0.01$ $0.04 W - 1 RNA = 0.04 W = 0.04 W$		2 1 0			
Resist (f)	tors a (i)		Answer from given working n many electronic circuits. te the voltage V _{out} in the circuit shown below.					
		9 V O- 800	$V_{out} = \frac{R_2}{R_t} \times V_S$ $V_{out} = \frac{2000}{2800} \times 9 \qquad 1 \text{ RNA}$ $V_{out} = 6.43 \text{ V} \qquad 1 \text{ RNA}$					
		2 kG 0 V O -	2 V _{out}					
		1 RNA for substitution 1 RNA for correct answer from working						
	(ii)	State th	e name of the series resistor arrangement shown above.	_	0			
		Voltage	e divider/Potential divider	1 0				

Page 10

Mark Allocation

An electric motor drives the conveyor belt system through a simple gear train.

(c) Calculate the speed of the output gear when the input gear rotates at 960 rev/min.

$(\mathbf{N} \times \mathbf{T})_{DRIVER}$	=	$(N \times T)_{DRIVEN}$	
N _{DRIVEN}	=	$\frac{960 \times 14}{42}$	1 substitution
N _{DRIVEN}	=	320 rev/min	1 Answer from given working

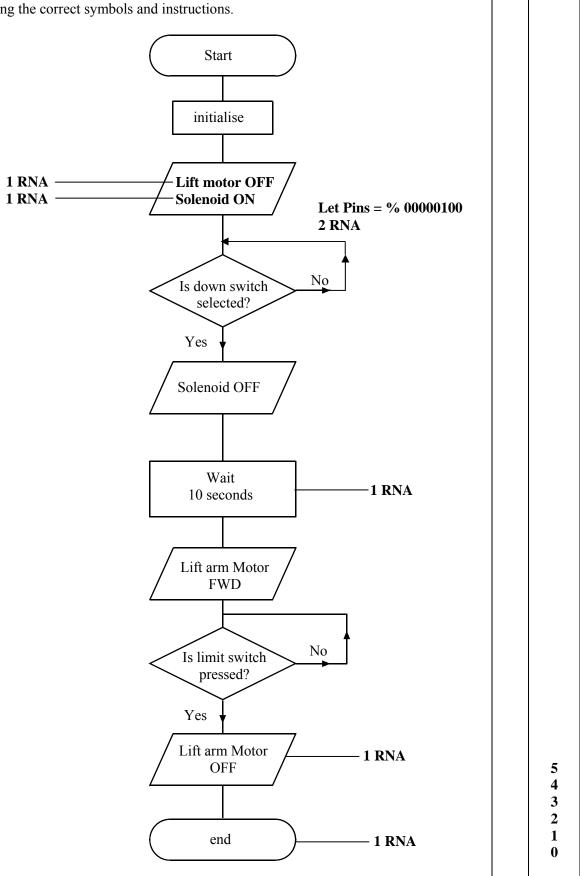
2 1 0

Marks

RNA

KU

An au	tomatic bicycle rack for a car is	s operated by a micro	ocontroller.	KU	RN
An au	tomatic bicycle rack for a car is	s operated by a micro	ocontroller.		
 TI W th W m 	e lift arm motor rotates forward hen the lift arm is in the fully l otor.	t arm motor off and l ed the locking solend			
• 11	ne sequence ends.		1	,	
		Pin	Output Connection		
	Input Connection			-	
	Input Connection	7			
	Input Connection	7 6		-	
	Input Connection	7 6 5			
	Input Connection	7 6 5 4			
	Input Connection	7 6 5 4 3	Lift Arm Motor FORWARD		
	Limit Switch	7 6 5 4			


Mark Allocation

Marks

RNA

KU

(*a*) Complete, with reference to the sequence of operations and Data Booklet, the flowchart by adding the correct symbols and instructions.

			Mark A	llocation	-	arks
					KU	RNA
	Complete, with reference to the microcontroller connections, Data Booklet and flowchart, the PBASIC program.					
	init:		DIRS = %11111100 pins = 0	<i>'set pins 0 and 1 as inputs, rest outputs 'switch all pins off</i>		
	main	ifp	pins = %00000100 in0 = 1 then label_1 o main	'solenoid ON and motor OFF 'test pin0 'jump to main		
	label		y 2/let pins = Ø use 10000 h 3	'solenoid OFF '10 second delay 'motor forward		
	label		$\frac{1}{1} = 1$ then label_3 o label_2	'test pin 1		5 4 3
	label	_3: low end		'motor off, PIN 3 off 'end program		2 1 0
:)	State	two advantag	ges of using a microcontro	ller instead of a hardwired electronic circuit.		
	1 More flexible/features/accurate/re-program Smaller Explain Chapper					
	2	Easier assen	nbly/less parts	Cheaper	1 0	
!)	State	the full nam	e and function of the follo	owing microcontroller terms.		
	(i)	ROM				
		Full name	Read only memory		2	
	Function Memory where program or data is stored					
	(ii) RAM					
	Full name Random access memory					
		Full name	Random access memo	ory	2	
		Full name Function	Random access memo Working memory of c	-	2 1 0	
	(iii)			-	1	
	(iii)	Function		-	1 0 2	
	(iii)	Function ALU	Working memory of c	controller atical functions/	1 0	
?)		Function ALU Full name Function	Working memory of c Arithmetic logic unit To carry out mathema	controller atical functions/ controller	1 0 2 1	