2012 Technological Studies

Standard Grade - Credit

Finalised Marking Instructions

© Scottish Qualifications Authority 2012

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Mark Allocation

1. A mobile pitch-side camera system is used during a rugby match.

(a) Describe, with reference to the control diagram, the operation of the system.

The system moves the camera to the position set by the user
(1) RNA

The error detector compares the desired position with the actual position
(1) RNA

The O/P driver provides the power required to drive the motor
(1) RNA

The position sensor provides feedback
(1) RNA
plus any other valid point. Not "control right = moves right"
The camera system makes use of closed loop control.
(b) Explain the difference between an open loop and closed loop system.

Closed loop has feedback	(1) KU
Open loop has no feedback	(1) KU

2. An action film sequence uses a number of special effects operated by a microcontroller.

The program makes use of a sub-procedure "Action", shown on the flowchart below.

2. (continued)

Input and output connections to the microcontroller are shown in the table below.

Input Connection	Pin	Output Connection
	7	Smoke effect
	6	Blast effect
	5	
	4	
	3	
	2	
	1	
Sensor	0	

Complete the PBASIC program for sub-procedure "Action", with reference to the flowchart, Data Booklet, and the input/output connections.
(1) RNA

$$
\begin{array}{ll}
\text { Init: } & \text { let dirs }=\% 1100000 \\
& \text { symbol counter }=\text { b0 }
\end{array}
$$

Action: if pin $0=0$ then action
(1) RNA $\left\{\begin{array}{l}\text { high } 7 \\ \text { pause } 1000 \\ \text { low } 7\end{array}\right.$
(1) RNA for counter $=1$ to 3

Alternative:
if pin $0=1$ then jump
goto action
jump:
3. A digital electronic system is used to control part of an electronic toy as shown in the truth table below.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{Z}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(a) Complete, with reference to the truth table, a Boolean expression for \mathbf{Z} in terms of A, B and C.
$Z=A \cdot \bar{B} \cdot C+A \cdot B \cdot C$
(1) RNA for ANDing inputs
(A•C (2) RNA)
(1) RNA for OR conditions
(b) Complete a logic diagram for the following Boolean expression.

$$
Z=(A \cdot C)+\bar{B}
$$

(1) KU for 3 symbols
nections to each gate
3. (continued)
(c) State, with reference to the Data Booklet, the full name of the following two ICs (Integrated Circuits) required to form part of the circuit.

IC Number 7408
Full Name Quad 2 input AND (1) KU
IC Number 7404
Full Name Hex Inverter
(1) KU
(d) State two characteristics of a 7400 series IC (Integrated Circuit).

High power consumption/high speed switching/unaffected by
static/low fan out
(1) RNA for each valid response

Marks	
KU	RNA
210	
2	
1	
0	

4. A prototype for a burglar alarm system is required.

A buzzer will sound if master switch \mathbf{C} is on and either pressure switch \mathbf{A} or \mathbf{B} is also pressed.
(a) Complete the circuit below using three SPST switches and a buzzer.

4. (continued)

The circuit is adapted so that an LED switches on when the system is active.
(b) Draw the symbol for an LED.

(1) KU
(c) Describe how an LED should be protected when wired in a circuit.

5. A Scottish island community is looking to become self sufficient in energy production.

(a) Describe an advantage that tidal power has over wind power.

It is predictable/negative aesthetics of wind power (1) KU
(b) Describe how a wind turbine typically produces electricity.
Wind causes a turbine to turn
(1) RNA

Turbine causes a generator to turn and produce electricity
(1) RNA
(c) Describe two disadvantages of using finite energy sources.

Pollution/limited supply
(1) RNA for each valid descriptive response
5. (continued)

Holiday cottages on the island are installed with solar thermal panels to heat the cold water.

It was found that $\mathbf{1 0 0} \mathbf{k g}$ of water at $\mathbf{1 0}^{\mathbf{}} \mathbf{C}$ entered the solar panels and absorbed $\mathbf{7 M J}$ of heat energy.
(d) (i) Calculate, with reference to the Data Booklet, the final temperature of the water.

E	$=$	$\mathrm{MC} \Delta \mathrm{T}$	
7000000	$=$	$100 \times 4190 \times \Delta \mathrm{T}$	(1) RNA for substitution
$\Delta \mathrm{T}$	$=$	$16.7^{\circ} \mathrm{C}$	(1) RNA \quad for answer from
Final Temp	$=10+16.7=26.7^{\circ} \mathrm{C}$	(1) RNA working(FTE)	
		$\left(27^{\circ} \mathrm{C}\right)$	

(ii) Calculate the efficiency of the solar panels if the sun provided 11 MJ of heat energy.
$\eta=\frac{\text { Eout }}{E n}$
$\begin{aligned} & \text { (1) } \text { RNA for substitution } \\ &=\quad \frac{7 \mathrm{MJ}}{11 \mathrm{MJ}}=0.636 \\ &=\quad 64 \%\end{aligned}$
(1) RNA for answer from working
6. Microcontrollers are increasingly used in electronic control systems.

(a) Explain why the microcontrollers are often used instead of hard-wired electronic circuits.

Easier to reprogram/requires fewer components/

shorter assembly time/etc	(1) KU for each valid
Smaller/cheaper must be qualified	explanation/answer

(b) Complete the table below to match the microcontroller sub-system to its function.

Sub-system	Function
Clock	Synchronises the system/keeps all parts working in time with each other
I/O Port	Links the microcontroller to the outside world
EEPROM	Stores the program
ALU	Performs calculations

(1) KU
(1) KU
(1) KU
6. (continued)
(c) State the full name of EEPROM.

Electrically (Electronically), Eraseable, Programmable, Read-Only
Memory
(1) KU
(d) Explain why sub-procedures are commonly used in a control program.

Reduce overall program size/make program easier to
understand/reduces memory requirement
$56=\%$
00111000
(1) RNA
(ii) Convert the following binary number to decimal.

$$
\% 11001101=205
$$

(1) RNA
(f) State the name of a method of controlling the speed of a motor using a microcontroller.

PWM/Pulse Width Modulation
(1) KU
7. A solar powered water pumping system is being tested for use in developing countries.

The system consists of two separate mechanisms.
(a) State the name of the following mechanisms.

(b) Describe the change in motion produced by mechanism B.

Rotational to reciprocal
7. (continued)
(c) Calculate the output speed of mechanism A.

Output speed $=\quad 2000 \div\left(\frac{80}{20} \times \frac{48}{15}\right)=156$ rev/min \quad| (1) RNA for substitution |
| :--- |
| (1) RNA for answer |
| from working |

(1) RNA for $\mathrm{VR}_{1} \quad$ (1) RNA for VR_{2}

Alt:
$20 \times 2000=80 \times \mathrm{T}_{1}$
(1) RNA
$15 \times 500=48 \times \mathrm{T}_{2}$
(1) RNA
$\mathrm{T}_{1}=500 \mathrm{rev} / \mathrm{min}$
(1)
RNA
$\mathrm{T}_{2}=156 \mathrm{rev} / \mathrm{min}$
(1) RNA

Mechanism A is decided to be too bulky and is replaced by the following mechanism.

(d) State the name of this mechanism.
Worm and wheel
(1) KU
(e) Describe how friction could be reduced in a mechanical system.
Lubricating moving parts or bearings on shafts
(1) KU
correct description
(f) State the names of two mechanisms that will convert rotational motion into linear motion.

1	Rack and pinion	(1) KU	2
Worm and nut	(1) KU	1	
	Allow FTE from (b) if applicable		

8. A model dragon is used as part of a stage production.

Marks	
KU	RNA

The dragon's mouth is operated by pressing Valve (A), or by pressing Valve (A) and (B) together.
(a) Describe, using appropriate terminology, how the pneumatic circuit operates.

When Valve (A) is activated Valve changes state causing the DAC to outstroke slowly. When the DAC is fully outstroked it actuates Valve (D) which sends a pilot signal to Valve C. This caused Valve (C) to change state and instroke the DAC. If Valve (A) and Valve (B) are actuated the DAC will outstroke quickly.
(1) RNA for each valid point up to a (maximum of 5)
8. (continued)
(b) State the full name of the following components.

| Valve (C) $5 / 2 /$ pilot / pilot | (1) KU for each term any order |
| :--- | :--- | :--- |
| Device (E) Uni Directional Restrictor | (1) KU |

Marks	
KU	RNA

It was decided to control the dragon's mouth with an electronic control system.
(c) (i) State the name of the actuator that is used for electronic control of a pneumatic valve.

Solenoid
 (1) KU

(ii) Draw the symbol for this actuator.

(1) KU

FTE from (c) (i)

Air pressure is supplied to the double-acting cylinder at $0.2 \mathrm{~N} / \mathrm{mm}^{2}$.

Diameter 10 mm
(d) Calculate the instroking force produced by the cylinder.

$$
\begin{aligned}
& \mathrm{A}=\pi \mathrm{r}^{2}=\pi \times 15^{2}=706 \mathrm{~mm}^{2} \text { \}(1) RNA for } \\
& \mathrm{a}=\pi \mathrm{r}^{2}=\pi \times 5^{2}=78.5 \mathrm{~mm}^{2} \int_{\text {either calculation }} \\
& \text { AtOtal }=706-78.5=627.5 \mathrm{~mm}^{2} \text { (1) RNA for answers } \\
& F=P \times A \\
& =0.2 \times 627.5 \text { (1) RNA for substitution (FTE) } \\
& =125.5 \mathrm{~N} \quad \text { (1) RNA for answer from working }
\end{aligned}
$$

9. A game show contestant must perform a task without covering a light sensor. If it is covered then an alarm sounds.

The circuit is shown below.

(a) Calculate the resistance of the LDR when $\mathrm{V}_{\text {out }}$ is 0.5 V .

$$
\begin{aligned}
\frac{V_{1}}{V_{2}}=\frac{R_{1}}{R_{2}} & =\frac{0 \cdot 5}{4 \cdot 5} \quad \text { (1) RNA for substitution } \\
V_{1} & =\frac{0.5 \times 4 \cdot 3}{4 \cdot 5} \\
& =478 \Omega \quad \begin{array}{l}
\text { (1) RNA for answer } \\
\text { from given working }
\end{array}
\end{aligned}
$$

During the testing the light level is varied.
(b) (i) Determine, with reference to the Data Booklet, the resistance of the LDR at 20 Lux.

$5 \mathrm{k} \Omega$
 (1) RNA

(ii) Calculate the base current (I_{B}) when $\mathrm{V}_{\text {out }}$ is 3.2 V and R_{b} is $1.5 \mathrm{k} \Omega$.

$$
\begin{aligned}
I_{B}=\frac{V}{R}= & \frac{3 \cdot 2-0 \cdot 7}{1500} & & \text { (1) RNA for voltage calculation } \\
& =0.0017 \mathrm{~A} & & \text { (1) RNA for substitution } \\
& (1.7 \mathrm{~mA}) & & \text { from given working }
\end{aligned}
$$

9. (continued)
(c) Explain the function of the following components that are often used in this type of circuit.
(i) Relay Allows the electronic circuit to control high powered electrical circuits
(1) KU
(ii) Base Resistor $\left(\mathrm{R}_{\mathrm{b}}\right) \frac{\text { Protects the transistor from high }}{\text { current }}$ (1) RNA
(iii) Diode Protects the transistor from back EMF/voltage (1) RNA
(d) Describe an advantage of testing an electronic circuit using computer simulation.

Components will not be damaged/quicker to fix or adapt
design/etc
(1) RNA
10. During the design of a new lightweight family car the forces acting on it are analysed.

The forces are shown on the diagram above.
(a) State the name of this type of diagram.
Free body (diagram)
(1) KU
(b) Calculate the reaction force at R_{2}.
(Take moments about R_{1}).

$\Sigma \mathbf{\Sigma} \mathbf{W M}=\Sigma \mathbf{\Sigma A C W M}$

$(1300 \times 0.5)+(6000 \times 1.5)+(1800 \times 2)=R_{2} \times 3$ (1) RNA for substitution
$650+9000+3600=R_{2} \times 3$
$R_{2}=\frac{13250}{3}$
(1) RNA for transposition
$=4416.7 \mathrm{~N}$
(1) RNA for answer from given working

