2009 Technological Studies

Standard Grade - Credit

Finalised Marking Instructions

The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from the Question Paper Operations Team, Dalkeith.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's Question Paper Operations Team at Dalkeith may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Mark Allocation

1. The moisture level in a greenhouse is controlled automatically.
(a) Complete the control diagram below.

(b) State the type of control produced by this automatic system.
Closed loop
(1) $\mathbf{K U}$
(c) State a suitable electronic device which could be used for the output driver sub-system.
\qquad
Transistor
(1) KU

- Amplifier - Transducer Driver
(d) Describe the operation of sub-system A.

(1) KU

(1) KU

It controls the operation by comparing the two inputs and switching the
output on or off. (Error detector - 1 KU)

Mark Allocation

2. A 0.7 kg ball is dropped from a 10 m high balcony.

(a) Calculate, showing all working and units:
(i) the potential energy of the ball at the balcony;

$$
\begin{aligned}
\mathbf{E}_{\mathbf{p}} & =\mathbf{m g h} & & \\
& =0.7 \times 9.81 \times 10 & & \text { (1) } \text { RNA substitution } \\
& =68.67 \mathrm{~J} & & \text { (1) } \text { RNA correct answer from given working }
\end{aligned}
$$

(ii) the maximum velocity of the ball.
(Assume that all E_{p} is converted into E_{k}.)

$$
\begin{array}{rlr}
\mathbf{v} & =\sqrt{\frac{2 \mathrm{E}_{\mathrm{k}}}{\mathrm{~m}}} & \\
& =\sqrt{\frac{2 \times 68 \cdot 67}{0.7}} & \text { (1) RNA substitution } \\
& =14 \mathrm{~m} / \mathrm{s} & \text { (1) RNA correct answer from given working }
\end{array}
$$

(b) When the ball bounces, it does not reach its original height.

State the two main forms of energy which are lost when the ball bounces.
(i) \qquad
(1) $\mathbf{K U}$
(ii) Sound
(1) $\mathbf{K U}$

Renewable energy can be generated from a number of different sources.
(c) State one disadvantage for each of the following renewable sources.
(Give a different disadvantage for each source.)
Tidal Restricted location, damage to marine life etc \quad (1) KU

Wave Difficult to maintain, danger to shipping, calm etc (1) KU
3. A pneumatic circuit is used to control the operation of an automatic door.

When a person steps on to the pressure sensor, the piston will instroke and open the door. After an 8 second delay, the piston will automatically outstroke and slowly close the door.
(a) Complete the piping of the pneumatic circuit below.

Marks	
$\mathbf{K U}$	RNA

Page 4

Mark Allocation

(b) State the full name of the following pneumatic components.
(i) Actuator B
Diaphragm
(1) $\mathbf{K U}$
(ii) Device (3)
$\underline{\text { Unidirectional restrictor (1) KU }}$
(iii) Valve (C) Roller trip actuated/3/2/spring return
(1) KU (1) KU (1) KU
(c) Describe, using appropriate terminology, the operation of Device (3).

It slows down the air in one direction only
(1) $\mathbf{K U}$
(1) $\mathbf{K U}$
(d) Calculate the instroking force when the air pressure is $2.32 \mathrm{~N} / \mathrm{mm}^{2}$.

Diameter 32 mm

$\mathrm{A}=\pi \mathbf{R}^{2}$
$\mathbf{A}_{\text {EFF }}=\quad \mathbf{A}-\mathbf{a}$
$=3.14 \times 16^{2}$
(1) RNA
$=\quad 803.84-38.46$
$=\quad 803.84 \mathrm{~mm}^{2}$
$=765.38 \mathrm{~mm}^{2}$
(1) RNA
$\begin{aligned} \mathrm{a} & =\pi r^{2} \\ & =\quad 3 \cdot 14 \times 3.5^{2}\end{aligned}$
(1) RNA
$\mathbf{F}=\mathbf{P a}$
$=38.46 \mathrm{~mm}^{2}$
$=\quad 2.32 \times 765.38$
(e) (i) State the name of Device (2).
Reservoir
(1) $\mathbf{K U}$
(ii) Describe why Device (2) is rarely used on its own to produce a pneumatic time delay.

$$
\text { Not adjustable } \quad \text { (1) KU }
$$

Mark Allocation

4. An automatic lighting system has been developed so that it only switches on when someone is sensed in the room. The circuit diagram is shown below.

(a) Describe, using appropriate terminology, the operation of the:
(i) Input sub-system

When someone passes in front of the sensor it gets dark, which increases R, which increases output V. Variable resistor to adjust sensitivity.
(ii) Process sub-system

When voltage increases, transistor switches on output. Resistor to protect transistor.
(iii) Output sub-system

Relay closes to switch on external circuit. Diode to protect transistor from back emf.
(1) RNA for each valid point. Up to a maximum of (2) RNA for each sub-system.

Marks	
KU	RNA
	210210210

Mark Allocation

Another part of the lighting system uses the following circuit.

(b) Calculate:
(i) the current through the 120Ω resistor;

I	$=\frac{\mathbf{V}}{\mathbf{R}}$	
	$=\frac{5}{120}$	(1) RNA substitution
	$=$0.04 A (1) RNA correct answer from given working	

(ii) the voltage V_{2};
$\mathbf{V}=\mathbf{I R}$
$=0.04 \times 220$
(1) RNA substitution (Allow FTE)
$=\mathbf{8 . 8} \mathrm{V}$
(1) RNA correct answer from given working

(iii) the total resistance of the three parallel resistors;

$$
\begin{aligned}
& \frac{1}{\mathbf{R}_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
&=\frac{1}{100}+\frac{1}{200}+\frac{1}{800} \\
& \text { (1) RNA substitution } \\
&=\frac{8+4+1}{800} \\
& R_{T}=\frac{800}{13}=61 \cdot 54 \Omega \\
& \text { (1) RNA reciprocal }
\end{aligned}
$$

(iv) the supply voltage V_{S}.

$$
\begin{array}{rlr}
\mathbf{V} & =\mathbf{I R} & \\
& =\mathbf{0 . 0 4} \times \mathbf{6 1 . 5 4} \quad \text { (1) RNA substitution } \\
& =2.46 \mathrm{~V} \quad \text { (1) } \text { RNA correct answer from given working } \\
\mathbf{V}_{\mathrm{S}} & =5+\mathbf{5 . 8}+\mathbf{2 . 4 6}=\mathbf{1 6 . 2 6} \mathrm{V} \quad \text { (1) RNA correct answer from given working }
\end{array}
$$

Mark Allocation

5. A conveyor belt is used to move packages in a warehouse. When the conveyor belt stopped, packages were in the position shown.

(a) Draw the free body diagram for the system.

(b) (i) Calculate, by taking moments about support A, the reaction at support B.
$\mathbf{C W M}=\mathrm{ACWM}$
$(1.8 \times 23)+(4 \times 36)+(6.3 \times 64)=8.7 \mathrm{R}_{\mathrm{B}} \quad$ (1) RNA substitution
$41.4+144+403.2=8.7 \mathrm{R}_{\mathrm{B}}$
$\mathbf{R}_{\mathbf{B}}=\frac{\mathbf{5 8 8 \cdot 6}}{\mathbf{8 \cdot 7}}$
(1) RNA transposition
$=\quad 67.6 \mathrm{~N} \uparrow$
(1) RNA correct answer from given working
(ii) Determine the reaction at support A .

$$
\begin{array}{rll}
\uparrow & =\downarrow \\
67 \cdot 6 \mathbf{N}+\mathbf{R}_{\mathbf{A}} & =23+36+64 \quad \text { (1) } \text { RNA substitution } \\
\mathbf{R}_{\mathbf{A}} & =55.4 \mathrm{~N} \uparrow \quad \text { (1) } \text { RNA correct answer from given working }
\end{array}
$$

NB: Allow FTE

Mark Allocation

The conveyor belt is driven by a gear drive, part of which is shown below.

(c) State one advantage of using a gear drive over a belt drive.
No slippage
(1) KU
(d) (i) State the name of Gear (A.
Idler
(1) $\mathbf{K U}$
(ii) Describe the effect Gear A has on the output speed and direction of the mechanism.
Speed - No effect (1) $\mathbf{K U}$

Mark Allocation

Another part of the system makes use of the mechanism shown below.

(e) State the name of the two parts of the mechanism show above.

Part (1)	Worm	(1) $\mathbf{K U}$	2
Part (2)	Wheel	(1) $\mathbf{K U}$	

2
0
6. A student is programming a microcontroller to start and slowly accelerate a motorised buggy.

A graph showing the control required is given below.

(a) State the name given to the programming technique where a motor is rapidly switched on and off.

Pulse Width Modulation (accept PWM) (1) $\mathbf{K U}$

(b) For the programming technique you named in (a):
(i) state the name given to the time when the motor is switched on;
Mark
(1) $\mathbf{K U}$
(ii) state the name given to the time when the motor is switched off.

Space (1) KU

1
0

1
0

1
0

The student's initialisation and the PBASIC sub-procedure "speed", used to slowly accelerate the buggy, is shown below.

init:	$\begin{aligned} & \text { symbol } x=b 0 \\ & \text { symbol } y=b 1 \\ & \text { symbol motor }=7 \\ & \text { let } x=0 \\ & \text { let } y=50 \end{aligned}$	'rename memory location b0 as x 'rename memory location b1 as y 'rename pin 7 as "motor" 'starting value of x is 0 'starting value of y is 50
speed:	for $\mathrm{b} 2=1$ to 10	'start for ... next loop
	high motor	'motor on
	pause x	'pause x ms
	low motor	'motor off
	pause y	'pause y ms
	let $\mathrm{x}=\mathrm{x}+5$	'add 5 to x
	let $\mathrm{y}=\mathrm{y}-5$	'subtract 5 from y
	next b2	'complete for ... next loop
	return	'return to main program

rename memory location b0 as x
'rename 7 as 'motor'
'starting value of x is 0
'starting value of y is 50
'start for ... next loop
'motor on
'pause x ms
'motor off
'pause y ms
'add 5 to x
'subtract 5 from y
'complete for ... next loop
'return to main program

Marks	
KU	RNA

Mark Allocation

(c) Complete, with reference to the PBASIC "speed" sub-procedure and the Data Booklet, the flowchart below.

7. A set of DJ turntables has a number of indicator lights. Part of the circuitry for the control of these lights is shown below.

Marks	
KU	RNA

(a) State, with reference to the Data Booklet, the full name of the ICs required to build the circuit.

IC Number 7400
Full Name Quad 2 Input NAND (1) KU

IC Number 7404
Full Name
Hex Inverter
(1) $\mathbf{K U}$
(b) Draw the logic diagram for the wiring circuit shown above.

Mark Allocation

(c) (i) State the name of the family which these ICs belong to.
TTL
(1) $\mathbf{K U}$
(ii) State a suitable supply voltage $\left(\mathrm{V}_{\mathrm{cc}}\right)$ for this family of ICs.
5 V
(1) $\mathbf{K U}$
FTE
(iii) State the name of another family of ICs.
CMOS
(1) $\mathbf{K U}$
FTE
(iv) State one advantage of using this family of ICs over the type named in (iii).
Faster switching
(1) $\mathbf{K U}$
FTE
(v) State one disadvantage of using this family of ICs over the type named in (iii).

Stabilised power supply required (1) KU
(d) State the purpose of the dot on an IC.
To indicate PIN 1
(1) $\mathbf{K U}$

An LED is used to show a high output from the circuit.
(e) (i) State the full name of an LED.

Light Emitting Diode
 (1) $\mathbf{K U}$

(ii) Draw the symbol for an LED below.

A resistor is normally used in series with an LED.
(f) State the purpose of this resistor.

To protect the LED (from too much current.) (1) KU

Mark Allocation

8. Microcontrollers are used in a variety of modern systems.

A simplified block diagram showing a microcontroller is given.

(a) State the name of the parts $(\mathbf{A}$ to $\mathbf{E})$ shown on the diagram above.
A ALU
(1) $\mathbf{~ K U}$
B
Clock (1) KU
C \qquad
D
ROM (1) KU
E
I/O Unit
(1) $\mathbf{K U}$

Marks	
KU	RNA

