2013 Technological Studies

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2013
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Technological Studies Intermediate 2

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader/Principal Assessor. You can do this by posting a question on the Marking Team forum or by e-mailing/phoning the e-marker Helpline.
(b) Marking should always be positive ie, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Technological Studies Intermediate 2

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

Part Two: Marking Instructions for each Question

SECTION A

Question		Expected Answer/s	Max Mark	Additional Guidance	
$\mathbf{1}$	a		Error detector	$\mathbf{1}$	
b	i	ii	Negative (feedback)	$\mathbf{1}$	Ignore lack/‘feedback'
caintaining desired level	The position is set. The position sensor sends the actual position to the error detector. This signal is compared with the set position. If there is an error then the control unit will switch on the motor, moving the telescope to the desired position. When there is no error detected then the motor will stop. $\mathbf{1}$ mark for each correct statement	$\mathbf{3}$	Reducing the error		

uestion			Expected Answer/s	Max Mark	Additional Guidance
3	a			5	Accept binary equivalent for pins Syntax must be correct
	b	i	Pulse Width Modulation	1	Full name not PWM
		ii	space	1	
4	a		$\begin{array}{lll}\mathrm{Z} & \\ 0 & \\ 1 & \mathbf{1} \text { mark each output row } \\ 1 & \\ 0 & \\ 1 & \end{array}$	4	
	b		1 mark for each gate (correct symbol)	 4	
	c		CMOS	1	

Question			Expected Answer/s		Max Mark 2	Additional Guidance
5	a	i	$\begin{aligned} \mathrm{Ek} & =\frac{1}{2} \mathrm{mv}^{2} \\ & =\frac{1}{2} \times 2500 \times 15^{2} \\ & =281250 \mathrm{~J}(281 \mathrm{~kJ}) \end{aligned}$	1 mark 1 mark		
		ii	$\mathrm{Ek}=\mathrm{Ep}=281250 \mathrm{~J}$ $\begin{aligned} \mathrm{h} & =\frac{\mathrm{Ep}}{\mathrm{mg}}=\frac{281250}{2500 \times 9.81} \\ & =11 \cdot 47 \mathrm{~m} \end{aligned}$	1 mark (FTE) 1 mark 1 mark	3	Allow FTE from (a) (i)
	b	i	Wind resistance, Friction,		1	Cause only; not the form of energy lost
		ii	Streamline, lubrication		1	
6	a	i	$\begin{aligned} \frac{1}{\mathrm{R}_{\mathrm{T}}} & =\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}} \\ \frac{1}{\mathrm{R}_{\mathrm{T}}} & =\frac{1}{100}+\frac{1}{100}+\frac{1}{270} \\ \mathrm{R}_{\mathrm{T}} & =\frac{1}{0 \cdot 01+0 \cdot 01+0 \cdot 0037} \\ & =42 \cdot 2 \Omega \end{aligned}$	1 mark 1 mark 1 mark	3	$\begin{array}{rlr} \mathrm{R}_{\mathrm{T}} & =\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\ & =\frac{100 \times 100}{100+100} \\ & =50 \Omega & \mathbf{1} \text { mark } \\ \mathrm{R}_{\mathrm{T}} & =\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\ & =\frac{50 \times 270}{50+270} \quad \mathbf{1} \text { mark } \\ & =42.2 \Omega & \mathbf{1} \text { mark } \end{array}$
		ii	$42 \cdot 2+390=432 \cdot 2 \Omega$		1	Allow FTE from (a) (i)

Question			Expected Answer/s	Max Mark	Additional Guidance
6	a	iii	$\begin{aligned} \mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}} & =\frac{12}{432 \cdot 2} & & \mathbf{1} \text { mark } \\ & =0.028 \mathrm{~A} & & \mathbf{1} \text { mark } \end{aligned}$	2	Allow FTE from (a) (ii)
		iv	$\mathrm{P}=\mathrm{IV}$ $=0.028 \times 12$ $\mathbf{1}$ mark $=0.34 \mathrm{~W}$ $\mathbf{1}$ mark	2	Allow FTE from (a) (iii)
	b		accept indication anywhere on 270Ω lamp branch	1	

Question		Expected Answer/s	Max Mark	Additional Guidance
7			7	Decision loops must include (yes or no indication) If PBASIC commands are used ignore syntax but pin must be correct. (Pause 10000 and pause $3 \mathrm{~s}=1 \mathrm{mark}$)

Question			Expected Answer/s	Max Mark	Additional Guidance
8	a	i	Compound (gear train)	1	
		ii	Higher gear ratio achieved without very large gears (more compact)	1	
	b	i	$\begin{array}{rlr} \text { Velocity Ratio } & =\frac{\text { InputSpeed }}{\text { Output Speed }} \\ & =\frac{30}{1440} & \mathbf{1} \text { mark } \\ & =0.02: 1 & \mathbf{1} \text { mark } \end{array}$ Or 1:48 (accept 1:50)	$=\frac{20 \cdot 02: 1}{-}$	Answer from given working (allowing for rounding of VR)
		ii	$\frac{0 \cdot 02}{1}$ $=\frac{8}{\mathrm{~A}} \times \frac{8}{48}$ $\mathbf{1}$ mark $0 \cdot 02$ $=\frac{8}{\mathrm{~A}} \times 0 \cdot 1667$ $0 \cdot 1199$ $=\frac{8}{\mathrm{~A}}$ A $=\frac{8}{0 \cdot 1199}$ $\mathbf{1}$ mark $=64$ teeth $\mathbf{1}$ mark	3	Answer from given working (allowing for rounding of VR)

SECTION B

Question			Expected Answer/s	Max Mark	Additional Guidance
9	a		.the resistance of the LDR increases, increasing the value of voltage $\left(\mathrm{V}_{1}\right.$. As V_{1} increases past 0.7 v the transistor saturates, activating the relay. When the start switch is pressed the motor will start. 1 mark for each correct statement	4	
	b	i	$400 \Omega(0.4 \mathrm{k} \Omega)$	1	
		ii	Light Dependant Resistor	1	
	c	i	$\begin{array}{rlr} \mathrm{I}_{\mathrm{B}} & =\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{~h}_{\mathrm{FE}}} & \\ & =\frac{48 \mathrm{~mA}}{80} & \mathbf{1} \text { mark } \\ & =0.6 \mathrm{~mA} & \mathbf{1} \text { mark } \end{array}$	2	
		ii	$\begin{aligned} \mathrm{V} & =\mathrm{IR} \\ & =0 \cdot 0006 \times 1000 \\ & =0.6 \mathrm{~V} \\ \mathrm{~V}_{1} & =0.6+0 \cdot 7 \\ & =1.3 \mathrm{~V} \text { mark } \end{aligned}$	2	Allow FTE from (c) (i)
	d	i	Single Pole Double Throw	1	
		ii	To allow a low voltage/current electronic circuit to control a high current/voltage electrical circuit.	1	

Question			Expected Answer/s	Max Mark	Additional Guidance
9	g		Effective Area is smaller	1	Answer to be in the form of a description
10	a	i	A 1 1000rev/min B $24 \frac{1000 \mathrm{rev} / \mathrm{min}}{24}=41 \cdot 667 \mathrm{rev} / \mathrm{min}$ C $12 \quad 41 \cdot 667 \mathrm{rev} / \mathrm{min}$ D $36 \frac{12}{36} \times 41 \cdot 67=13 \cdot 889 \mathrm{rev} / \mathrm{min}$ (1) (1)	4	Apply FTE for speed of D using value given for gear C
		ii		3	Allow FTE from (a) (i)
	b		Worm	1	
	c		$\begin{array}{rrr} \mathrm{Z}=\mathrm{A} \cdot(\overline{\mathrm{~B}}+\overline{\mathrm{C}}) & & 1 \text { mark } \\ + & \mathbf{1} \text { mark } \\ & \text { Both }\left(\begin{array}{ll} \overline{\mathrm{B}} & \overline{\mathrm{C}} \end{array}\right) & \mathbf{1} \text { mark } \end{array}$	3	

Question			Expected Answer/s		Max Mark	Additional Guidance
10	d				4	
	e	i	7404: Hex Invertor 7408: Quad 2input AND gate	1 mark 1 mark	2	Fully stated description for the IC number
		ii	TTL		1	
		iii	$5 \mathrm{~V}(+/-0.25 \mathrm{~V})$		1	No FTE
		iv	to show where pin 1 is		1	

Question			Expected Answer/s	Max Mark	Additional Guidance
11	a	i	$\begin{array}{rlr} E_{e} & =P t \quad \mathrm{t} & =3 \times 60 \\ & =180 \mathrm{secs} & \\ & =42000 \times 180 & \mathbf{1} \mathbf{~ m a r k} \\ & =7560 \mathrm{~kJ} & \\ \mathbf{1} \mathbf{~ m a r k} \end{array}$	2	
		ii	$\begin{array}{rlr} \mathrm{E}_{\mathrm{p}} & =\mathrm{mgh} \\ & =1000 \times 9 \cdot 81 \times 500 & \\ & =4905 \mathrm{~kJ} & \\ & \mathbf{1} \text { mark } \end{array}$	2	
		iii	$\begin{aligned} \eta & =\frac{E_{\text {out }}}{E_{\text {in }}} \\ & =\frac{4905000}{7560000} \\ & =0.648 \\ \text { or } & \\ & =65 \% \end{aligned}$	2	Allow FTE from (a) (i) and/or (ii)
	b	i	friction at moving parts	1	Not type of energy lost
		ii	Lubricate gears, bearings or 'slipper' materials used	1	

Question			Expected Answer/s	Max Mark	Additional Guidance
11	c		Warning: for $\mathrm{b} 0=1$ to $20 \quad 1$ mark high 7 \qquad 1 mark high pause 250 1 mark low low 7 1 mark for both pauses next b0 1 mark return 1 mark	6	For counter $=1$ to 20 Next counter
	d	i	10 seconds	1	
		ii	Gosub (warning)	1	Ignore label
	e		Shorten the length of the program/allow similar programs to be used repeatedly in the same program	1	
	f	i	Electronic Erasable Programmable Read Only Memory	1	
		ii	Information can be re-written / non-volitile	1	
		iii	ROM / RAM	1	

