2012 Technological Studies

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2012
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

1. (a) (i)

	boundary around sub-systems but not external in/outputs

(ii) To separate the outside world from Input, process and outputs.

1 mark
(b) Light level is set,/ this is compared with actual light level./ If light level is too bright motor switches on closing the blind./ A blind sensor detects the position of the blind./ When it is closed it will stop./
(c) (i) Closed loop has feedback while open loop does not
(ii) (blind) Motor
2.
(a) (i)

1 mark

1 mark
2 marks
(sketched in correct
position on valve but any order)
(ii)

1 mark
(b) (i)

$$
\begin{aligned}
\mathrm{A}_{\text {effective }} & =\mathrm{A}_{\text {piston }}-\mathrm{A}_{\text {rod }} \\
& =706 \cdot 5-28 \cdot 26 \\
& =678.24 \mathrm{~mm}^{2}
\end{aligned}
$$

1 mark answer from working

$$
\begin{array}{rlr}
\mathrm{A}_{\text {piston }} & =\frac{\pi \mathrm{d}^{2}}{4} \\
& =\frac{3 \cdot 14 \times 30^{2}}{4} & \\
& =\underline{706 \cdot 5 \mathrm{~mm}^{2}} & \text { 1 mark } \\
\mathrm{A}_{\text {rod }} & =\frac{\pi \mathrm{d}^{2}}{4} & \begin{array}{l}
\text { (if R or } \emptyset \text { values } \\
\text { used in incorrect } \\
\text { formula }-1 \text { mark) }
\end{array} \\
& =\frac{3.14 \times 6^{2}}{4} & \\
& =\underline{28.26 \mathrm{~mm}^{2}} & \text { 1 mark }
\end{array}
$$

3 marks
(ii) $\mathrm{F}=\mathrm{PA}$

$$
\begin{aligned}
& =0.6 \times 678.24 \\
& =40 \epsilon .94 \mathrm{~N}
\end{aligned}
$$

1 mark (allow FTE)
1 mark (answer from working)

2 marks
Total 8 marks
3.
(a)

(b)

$$
\begin{aligned}
& 7400-(\text { Quad } 2 \text { input NAND }) \\
& 7402 \text { - }(\text { Quad } 2 \text { input NOR })
\end{aligned}
$$

1 mark
1 mark
(c) (i) Transistor Transistor Logic

1 mark
(ii) $5 \mathrm{v}(\pm 0.25 \mathrm{v})$

1 mark
(iii) faster; not affected by static, etc

1 mark

Total 8 marks

4. (a) 20 LUX
(b) (i) $5-4.5=0.5 v$
(ii) $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
$\frac{0.5}{4.5}=\frac{5}{\mathrm{R}_{2}} \quad 1$ mark (allow FTE)
$\mathrm{R}_{2}=45 \mathrm{k} \Omega$
1 mark (answer from working)
2 marks
$\begin{array}{llr}\text { (iii) } & \begin{array}{l}\text { off, } \\ (\mathbf{1} \text { mark })\end{array} & \text { Transistor is not saturated } \\ & (\mathbf{1} \text { mark }- \text { allow FTE })\end{array}$
(c) As the light level increases...
the resistance will decrease / and voltage (V_{1}) will decrease.
2 marks
(1 mark) (1 mark - FTE allow)
5.

(a) $\mathrm{Ek}=\frac{1}{2} \mathrm{mv}^{2}$

$$
\begin{array}{lr}
=\frac{1}{2} \times 80 \times 9^{2} & 1 \text { mark } \\
=3240 \mathrm{~J} & \mathbf{1} \text { mark }
\end{array}
$$

(b) $\mathrm{Ek}=\mathrm{Ep}$

$$
\begin{array}{rlrl}
\mathrm{Ep} & =3240 \mathrm{~J} & & \begin{array}{l}
\text { 1 mark (stated or inferred }- \text { allow } \\
\mathrm{Ep}
\end{array} \\
=\mathrm{mgh} & \\
\mathrm{~h} & =\frac{\mathrm{Ep}}{\mathrm{mg}} & & \\
& =\frac{3240}{80 \times 9.81} & & \mathbf{1} \text { mark } \\
& =4.13 \mathrm{~m} & \mathbf{1} \text { mark (answer from working) }
\end{array}
$$

Vaulter will clear the bar.
1 mark (allow FTE)
4 marks
(c) Energy lost due to friction or air resistance resulting (1 mark) in heat and sound energy ($\mathbf{1}$ mark).
,

2 marks
Total 8 marks
6. (a)

Amber on/off	$\mathbf{1}$ mark	
both waits	$\mathbf{1}$ mark	
decision inc feedback	$\mathbf{1}$ mark	
return	$\mathbf{1}$ mark	
correct symbols (all)	$\mathbf{1}$ mark	$\mathbf{5}$ marks

(b) $\begin{aligned} & (\text { let dirs }) \\ & (\mathbf{1} \text { mark })\end{aligned} \quad \begin{gathered}\% 11100000 \\ (\mathbf{1} \text { mark })\end{gathered}$
7. (a) (i) $\quad \mathrm{R}_{\mathrm{T}}=\frac{\mathrm{R}_{1} \times \mathrm{R}_{2}}{\mathrm{R}_{1}=\mathrm{R}_{2}}$

$$
\begin{aligned}
& =\frac{5 \cdot 6 \times 6 \cdot 8}{5.6+6.8} \\
& =\frac{38.08}{12.4} \\
& =3.07 \mathrm{k} \Omega
\end{aligned}
$$

1 mark

1 mark (answer from working)
2 marks
(ii) $10+3 \cdot 07+2 \cdot 2=15 \cdot 27 \mathrm{k} \Omega$

1 mark (allow FTE)
1 mark
(b) (i)

$$
\mathrm{V}=1 \mathrm{R}
$$

$$
\mathrm{A}_{2}=\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}
$$

$$
=\frac{56}{6800}
$$

1 mark (allow FTE)
$=56 \mathrm{~V} \quad 1 \mathrm{mark} \quad=0.00824 A \quad 1 \mathrm{mark}$ (answer from working)
or
3 marks
8 mA
(ii) $\quad \mathrm{A}_{3}=\mathrm{A}_{1}+\mathrm{A}_{2}$

$$
\begin{aligned}
& =10+8 \\
& =18 \mathrm{~mA}
\end{aligned}
$$

1 mark (allow FTE)
1 mark
Total 7 marks
8. (a)

$\mathbf{1}$ mark - all forces
(value \& direction)
1 mark - all distances

2 marks
(b) (i) $\quad \Sigma \mathrm{CWM}=\Sigma \mathrm{ACWM}$

$$
\begin{aligned}
\left(\mathrm{R}_{\mathrm{A}} \times 100\right) & =(15 \times 75)+(500 \times 50) & & \mathbf{1} \text { mark } \\
\mathrm{R}_{\mathrm{A}} & =\frac{1125+25000}{100} & & \mathbf{1} \text { mark }
\end{aligned}
$$

$$
=261 \cdot 25 \mathrm{kN}
$$

1 mark (answer from working)
3 marks
(ii) $\quad \begin{aligned} \sum \mathrm{F}_{\text {up }} & =\sum \mathrm{F}_{\text {down }} \\ 261 \cdot 25+\mathrm{R}_{\mathrm{B}} & =15+500 \\ \mathrm{R}_{\mathrm{B}} & =253.75 \mathrm{kN}\end{aligned}$

1 mark (allow FTE)
1 mark (answer from working) 2 marks
Total 7 marks
9. (a)
(b)

1 mark each symbol (2 marks)

1 mark correct orientation and position

3 marks
(c) Valve(1)is actuated sending air to valve(7)via shuttle valve (2)/ When valve (7)is actuated cylinder (A) piston will instroke opening the door. /The door will close /after a short time delay /or when valve(5)is pressed sending air via the shuttle valve (4)/actuating valve (7) making cylinder (A) outstroke.

1 mark for each relevant statement
(d) $\quad \mathrm{A}=\frac{\mathrm{F}}{\mathrm{P}}$
$=\frac{40}{0 \cdot 2}$
$=200 \mathrm{~mm}^{2}$

1 mark

1 mark

$$
\begin{aligned}
\mathrm{d} & =\sqrt{\frac{4 \mathrm{~A}}{\pi}} \\
& =\sqrt{\frac{4 \times 200}{3 \cdot 14}}
\end{aligned}
$$

$$
=15.96 \mathrm{~mm} \quad 1 \mathrm{mark}
$$

3 marks
(e)

$\begin{array}{ll}1 \text { mark } & \begin{array}{l}\text { person sensed } \\ \text { inc feedback }\end{array} \\ \mathbf{1} \text { mark } & \begin{array}{l}\text { door switch } \\ \text { check inc } \\ \text { feedback }\end{array} \\ \mathbf{1} \text { mark } & \text { door open } \\ \mathbf{1} \text { mark } & \text { wait } \\ \mathbf{1} \text { mark } & \text { loop to start } \\ \mathbf{1} \text { mark } & \begin{array}{l}\text { correct symbols } \\ \text { (all) }\end{array}\end{array}$

6 marks
(f)

2 marks

Total 20 marks
Page 10
10. (a) $10^{\circ} \mathrm{C}$
(b) (i) Variable resistor
(ii) Alters the 'switch on' condition
(c) $\quad V_{1}=\frac{75}{77} \times 6$

$$
=5 \cdot 84 \mathrm{~V}
$$

(d) $\quad \mathrm{V}_{2}=1.6-0.7 \quad$ Saturation (0.7 V)

$$
=0.9 \mathrm{~V}
$$

1 mark
1 mark (answer from working)
2 marks
(e) $\mathrm{h}_{\mathrm{FE}}=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{I}_{\mathrm{b}}}$

$$
\mathrm{I}_{\mathrm{b}}=\frac{\mathrm{I}_{\mathrm{c}}}{\mathrm{~h}_{\mathrm{FE}}}
$$

$$
=\frac{0 \cdot 2}{100}
$$

1 mark

$$
=0.002 \mathrm{~A}
$$

1 mark (answer from working
2 marks
(f)

1 mark correct symbol
1 mark correct orientation and position

2 marks
(g)

(i) | E_{e} | $=$ Itv | | |
| ---: | :--- | ---: | :--- |
| | $=10 \times 1800 \times 12$ | | $\mathbf{1}$ mark |
| | $=216000 \times 60$ | | $\mathbf{1}$ mark (answer from working) |

(ii)

$$
\begin{aligned}
\eta & =\frac{E_{\text {out }}}{E_{\text {in }}} \\
& =\frac{190000}{216000}-(\text { FTE }) \\
& =0 \cdot 879 \\
& =88 \%
\end{aligned}
$$

1 mark

1 mark (answer from working)
(h) Better insulating material on case/door seal Ensure door is always shut
(i) (i) Solar, wave, tidal, wind, hydro etc

1 mark

1 mark
2 marks

1 mark
(ii) Any relevant answer

- lack of sunlight
- no wind etc.

11. (a) main: for counter $=1$ to 210

1 mark if pin $2=1$ then freshen pause 10000 next counter freshen: high 7
pause 200
low 7
goto main

1 mark 1 mark 1 mark 1 mark 1 mark 1 mark
1 mark
(b) 2100 seconds or
35 minutes
1 mark
(c) (i) RAM
(ii) Volatile, information lost when no power.
(d) $\quad \mathrm{A}=(\overline{\mathrm{T}}+\mathrm{P}) \bullet \mathrm{S}$

\bar{T}	1 mark
+	1 mark
\bullet	1 mark

(e)

X	Y	Z
1	1	0
0	0	0
1	1	0
0	1	0
1	1	1
0	0	0
1	1	1
0	1	1

$Y=X+P$ allow FTE $\quad \mathrm{Z}=\mathrm{Y} \bullet S$ allow FTE

1 mark per column

3 marks

1 mark for each correct gate connection

3 marks
(f)

Total 20 marks

