2011 Technological Studies

Intermediate 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2011
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations Team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations Team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.
1.

(a) (i)

ALU 'Brain' of the microcontroller,
1 mark
CLOCK Synchronises all sub-systems 1 mark
EEPROM Stores program 1 mark
(Answers must be functional/related) 3 marks
(ii) Bus 1 mark
(b) (i) 00101001

1 mark
(ii) 5,3 and 0

1 mark
Total 6 marks
2.
(a) (i) $\quad \begin{aligned} Z & =(A+B) \cdot \bar{C} \\ 1 & \text { mark } \quad 1 \text { mark }\end{aligned}$
(a) (i) $\quad \begin{aligned} Z & =(A+B) \cdot \bar{C} \\ 1 & \text { mark } \quad 1 \text { mark }\end{aligned}$
(a) (i) $\quad \begin{aligned} Z & =(A+B) \cdot \bar{C} \\ 1 & \text { mark } \quad 1 \text { mark }\end{aligned}$
(a) (i) $\quad \begin{aligned} Z & =(A+B) \cdot \bar{C} \\ 1 & \text { mark } \quad 1 \text { mark }\end{aligned}$
(ii)

D	E	Z
0	1	0
0	0	0
1	1	1
1	0	0
1	1	1
1	0	0
1	1	1
1	0	0

0
1
$0 \quad 1$ mark per column
(i)

1 mark

0 \qquad 0 1

3 marks
(b) (i)

> 1 mark symbol 1 mark orientation
(ii) Protect LED, restrict the amount of current going to the LED
Or
Have most of the 5 V dropped across it protecting the LED
3. (a) $E_{p}=m g h$

$$
\begin{array}{lc}
=65 \times 9.81 \times 80 & 1 \text { mark } \\
=51,012 \mathrm{~J} & 1 \text { mark (answer from given working) } 2 \text { marks }
\end{array}
$$

(b)
(i) $E_{k}=51.012-31.5 \quad$ (Allow FTE)

1 mark
$=19.512 \mathrm{~kJ}$
1 mark
2 marks
(ii) $\mathbf{V}^{2}=\frac{E_{k}}{\frac{1}{2} \mathbf{m}}$

1 mark
$\begin{aligned} V & =\sqrt{\frac{19.512}{\frac{1}{2} \times 65}} \quad \text { (Allow FTE) } 1 \text { mark } \\ V & =24.5 \mathrm{~m} / \mathrm{s}\end{aligned} \quad 1$ mark (answer from given working) 3 marks
4.
(a) Error detector 1 mark
(b) (i) Negative
(ii) To maintain the desired level/reduce error
(c) The speed is set...the error detector compares this signal with the actual speed from the speed sensor. If there is a difference/error then the control unit will switch on the output driver activating the motor increasing the speed. When the speed sensor detects the speed at the same level as the set speed the motor will switch off.
5. (a) If pin $\mathbf{2} \mathbf{= 0} \mathbf{0}$ then main
pause 2000
for counter = 1 to 5
let pins $=\% 10100000$ OR (Iow 6 and high 5)
next counter
let pins = 0
goto main
1 mark each correct line
(b) Easy to update/change operating procedure
6. (a) (i) $100+270=\mathbf{3 7 0} \Omega$
(ii) $\frac{\mathbf{1}}{\mathbf{R}_{\mathbf{T}}}=\frac{\mathbf{1}}{\mathbf{R}_{1}}+\frac{\mathbf{1}}{\mathbf{R}_{\mathbf{2}}}+\frac{\mathbf{1}}{\mathbf{R}_{3}}$

$$
\frac{1}{R_{T}}=\frac{1}{100}+\frac{1}{370}+\frac{1}{100} \quad 1 \text { mark }
$$

$$
R_{T}=\frac{1}{0.0227}
$$

$$
=44 \Omega \quad 1 \text { mark (answer from given working) } 3 \text { marks }
$$

(iii) $\mathbf{I}=\frac{V}{\mathbf{R}}$
$=\frac{6}{44} \rightarrow($ Allow FTE $) \quad 1$ mark
$=0.136 \mathrm{~A} \quad 1$ mark (answer from given working) 2 marks
(iv) $\mathbf{P}=\mathrm{IV}$

$=0.136 \times 6$	1 mark
(Allow FTE)	
$=0.81 \mathrm{~W}$	1 mark (answer from given working)

(b) X should be placed between 6 V cell and first node

Or
Last node and 6 V cell
7. (a) Worm
(b) (i) VR $=\frac{\text { Input speed }}{\text { Output speed }}$

$$
=\frac{1200}{3}
$$

$$
1 \text { mark }
$$

$$
=400: 1 \quad 1 \text { mark (answer from given working) } \quad 2 \text { marks }
$$

(ii) $400=\frac{80}{1} \times \frac{\mathrm{D}}{50}$

1 mark
$\frac{400}{80}=\frac{D}{50}$
D $=5 \times 50$
$=250 \mathrm{~mm} \quad 1$ mark (answer from given working) 3 marks
(c) (i) Belt 2
(ii) Increase in friction (not reduce slippage)

Section B

9. (a) When the on switch is pressed...the heating element will switch on. As the temperature rises the resistance of the thermistor decreases and the voltage V_{2} will decrease. This will cause voltage V_{1} to increase, increasing the voltage ($\mathrm{V}_{\text {be }}$) across the transistor. When the transistor saturates the relay will activate breaking the 230 V circuit and switching the heating element off.

1 mark per each statement
4 marks
(b) (i) Single Pole Double throw 1 mark
(ii) Heating element requires 230 V to operate, not provided by the sensing circuit.

1 mark
(c) Type 2 mark
(d) Change sensitivity/allow for different switch or values. 1 mark
(e) (i) $\mathrm{V}_{2}=5-\mathbf{1}$

$$
=4 \mathrm{~V}
$$

(ii) $\frac{\mathbf{V}_{1}}{\mathbf{V}_{\mathbf{2}}}=\frac{\mathbf{R}_{1}}{\mathbf{R}_{2}}$
(Allow FTE) $\frac{1}{4}=\frac{R_{1}}{5}$
1 mark
$R_{1}=1.25 \mathrm{k} \Omega$
1 mark (answer from given working)
2 marks
(f) (i) $\mathbf{E}_{\mathbf{c}}=\mathbf{I t v}$

10. (a)

1 mark - forces
1 mark - length 2 marks
(b) (i) $\Sigma \mathbf{\Sigma} \mathbf{W} \mathbf{M}=\boldsymbol{\Sigma A C W M}$

$\left(R_{A} \times 3\right)=(1000 \times 1.5)+(750 \times 1.75)$	1 mark
$R_{A} \times 3=1500+1312.5$	1 mark
$R_{A}=\frac{2812.5}{3}$	

$R_{A}=937.5 \mathrm{~N} \quad 1$ mark (answer from given working) 3 marks
(ii) $\quad \Sigma \mathrm{F}_{\text {vertical }}=\mathbf{0}$

$$
=937 \cdot 5+R_{\mathrm{B}}-750-1000 \quad \text { (Allow FTE) } 1 \text { mark }
$$

$R_{B}=812 \cdot 5 \mathrm{~N} \quad 1$ mark (answer from given working) 2 marks
(c) symbol space $=\mathbf{b} 1$
if pin $1=0$ then main
if pin $0=0$ then main
gosub down
end
high 7
pause mark
return
1 mark each line
8 marks
(d) (i)

1 mark for digital signal
(ii) As diagram above

2 marks 1 mark
(e) (i) Random Access Memory 1 mark
(ii) Information can be lost when power is removed 1 mark
11. (a)
(i) Solenoid
(ii)

(b) (i)

(ii) Reservoir

$$
\begin{array}{ll}
1 \text { mark } & \text { symbol } \\
1 \text { mark } & \text { position } \\
1 \text { mark } & \text { orientation }
\end{array}
$$

3 marks
(c) $\mathbf{A}=\pi \mathbf{r}^{2}$

$$
\mathbf{F}=\mathbf{P A}
$$

$$
=3.14 \times 5^{2} \quad=0.25 \times 78.5 \quad 1 \text { mark }
$$

$=78.5 \mathrm{~mm}^{2} 1$ mark $=19.625 \mathrm{~N} \quad 1$ mark (answer from given working)

3 marks
(d) Effective area is smaller on instroke due to piston rod /and larger on outstroke (SAC spring stiffness less than/force due to air pressure)

1 mark each statement

2 marks
(e) Clean, efficient, less likely to break
(f) (i) 7404 - Hex Invertor

7408 - Quad 2input AND gate
1 mark
2 marks
(ii) TTL

1 mark
(iii) 5V

1 mark
(g)

4 marks

Total 20 marks
[END OF MARKING INSTRUCTIONS]

